xautodl/lib/xlayers/super_module.py
2021-05-12 13:54:06 +08:00

135 lines
4.3 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import abc
import warnings
from typing import Optional, Union, Callable
import torch
import torch.nn as nn
from enum import Enum
import spaces
from .super_utils import IntSpaceType, BoolSpaceType
from .super_utils import LayerOrder, SuperRunMode
from .super_utils import TensorContainer
from .super_utils import ShapeContainer
class SuperModule(abc.ABC, nn.Module):
"""This class equips the nn.Module class with the ability to apply AutoDL."""
def __init__(self):
super(SuperModule, self).__init__()
self._super_run_type = SuperRunMode.Default
self._abstract_child = None
self._verbose = False
def set_super_run_type(self, super_run_type):
def _reset_super_run(m):
if isinstance(m, SuperModule):
m._super_run_type = super_run_type
self.apply(_reset_super_run)
def add_module(self, name: str, module: Optional[torch.nn.Module]) -> None:
if not isinstance(module, SuperModule):
warnings.warn(
"Add {:}:{:} module, which is not SuperModule, into {:}".format(
name, module.__class__.__name__, self.__class__.__name__
)
+ "\n"
+ "It may cause some functions invalid."
)
super(SuperModule, self).add_module(name, module)
def apply_verbose(self, verbose):
def _reset_verbose(m):
if isinstance(m, SuperModule):
m._verbose = verbose
self.apply(_reset_verbose)
def apply_candidate(self, abstract_child):
if not isinstance(abstract_child, spaces.VirtualNode):
raise ValueError(
"Invalid abstract child program: {:}".format(abstract_child)
)
self._abstract_child = abstract_child
def get_w_container(self):
container = TensorContainer()
for name, param in self.named_parameters():
container.append(name, param, True)
for name, buf in self.named_buffers():
container.append(name, buf, False)
return container
@property
def abstract_search_space(self):
raise NotImplementedError
@property
def super_run_type(self):
return self._super_run_type
@property
def abstract_child(self):
return self._abstract_child
@property
def verbose(self):
return self._verbose
@abc.abstractmethod
def forward_raw(self, *inputs):
"""Use the largest candidate for forward. Similar to the original PyTorch model."""
raise NotImplementedError
@abc.abstractmethod
def forward_candidate(self, *inputs):
raise NotImplementedError
@property
def name_with_id(self):
return "name={:}, id={:}".format(self.__class__.__name__, id(self))
def get_shape_str(self, tensors):
if isinstance(tensors, (list, tuple)):
shapes = [self.get_shape_str(tensor) for tensor in tensors]
if len(shapes) == 1:
return shapes[0]
else:
return ", ".join(shapes)
elif isinstance(tensors, (torch.Tensor, nn.Parameter)):
return str(tuple(tensors.shape))
else:
raise TypeError("Invalid input type: {:}.".format(type(tensors)))
def forward(self, *inputs):
if self.verbose:
print(
"[{:}] inputs shape: {:}".format(
self.name_with_id, self.get_shape_str(inputs)
)
)
if self.super_run_type == SuperRunMode.FullModel:
outputs = self.forward_raw(*inputs)
elif self.super_run_type == SuperRunMode.Candidate:
outputs = self.forward_candidate(*inputs)
else:
raise ModeError(
"Unknown Super Model Run Mode: {:}".format(self.super_run_type)
)
if self.verbose:
print(
"[{:}] outputs shape: {:}".format(
self.name_with_id, self.get_shape_str(outputs)
)
)
return outputs
def forward_with_container(self, inputs, container, prefix=[]):
raise NotImplementedError