xautodl/exps/search-shape.py
2020-02-23 10:30:37 +11:00

203 lines
12 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import sys, time, torch, random, argparse
from PIL import ImageFile
from os import path as osp
ImageFile.LOAD_TRUNCATED_IMAGES = True
import numpy as np
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
print ('lib_dir : {:}'.format(lib_dir))
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, configure2str, obtain_search_single_args as obtain_args
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from procedures import get_optim_scheduler, get_procedures
from datasets import get_datasets, SearchDataset
from models import obtain_search_model, obtain_model, change_key
from utils import get_model_infos
from log_utils import AverageMeter, time_string, convert_secs2time
def main(args):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
#torch.backends.cudnn.deterministic = True
torch.set_num_threads( args.workers )
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
# prepare dataset
train_data, valid_data, xshape, class_num = get_datasets(args.dataset, args.data_path, args.cutout_length)
#train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
split_file_path = Path(args.split_path)
assert split_file_path.exists(), '{:} does not exist'.format(split_file_path)
split_info = torch.load(split_file_path)
train_split, valid_split = split_info['train'], split_info['valid']
assert len( set(train_split).intersection( set(valid_split) ) ) == 0, 'There should be 0 element that belongs to both train and valid'
assert len(train_split) + len(valid_split) == len(train_data), '{:} + {:} vs {:}'.format(len(train_split), len(valid_split), len(train_data))
search_dataset = SearchDataset(args.dataset, train_data, train_split, valid_split)
search_train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), pin_memory=True, num_workers=args.workers)
search_valid_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), pin_memory=True, num_workers=args.workers)
search_loader = torch.utils.data.DataLoader(search_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None)
# get configures
model_config = load_config(args.model_config, {'class_num': class_num, 'search_mode': args.search_shape}, logger)
# obtain the model
search_model = obtain_search_model(model_config)
MAX_FLOP, param = get_model_infos(search_model, xshape)
optim_config = load_config(args.optim_config, {'class_num': class_num, 'FLOP': MAX_FLOP}, logger)
logger.log('Model Information : {:}'.format(search_model.get_message()))
logger.log('MAX_FLOP = {:} M'.format(MAX_FLOP))
logger.log('Params = {:} M'.format(param))
logger.log('train_data : {:}'.format(train_data))
logger.log('search-data: {:}'.format(search_dataset))
logger.log('search_train_loader : {:} samples'.format( len(train_split) ))
logger.log('search_valid_loader : {:} samples'.format( len(valid_split) ))
base_optimizer, scheduler, criterion = get_optim_scheduler(search_model.base_parameters(), optim_config)
arch_optimizer = torch.optim.Adam(search_model.arch_parameters(), lr=optim_config.arch_LR, betas=(0.5, 0.999), weight_decay=optim_config.arch_decay)
logger.log('base-optimizer : {:}'.format(base_optimizer))
logger.log('arch-optimizer : {:}'.format(arch_optimizer))
logger.log('scheduler : {:}'.format(scheduler))
logger.log('criterion : {:}'.format(criterion))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
# load checkpoint
if last_info.exists() or (args.resume is not None and osp.isfile(args.resume)): # automatically resume from previous checkpoint
if args.resume is not None and osp.isfile(args.resume):
resume_path = Path(args.resume)
elif last_info.exists():
resume_path = last_info
else: raise ValueError('Something is wrong.')
logger.log("=> loading checkpoint of the last-info '{:}' start".format(resume_path))
checkpoint = torch.load(resume_path)
if 'last_checkpoint' in checkpoint:
last_checkpoint_path = checkpoint['last_checkpoint']
if not last_checkpoint_path.exists():
logger.log('Does not find {:}, try another path'.format(last_checkpoint_path))
last_checkpoint_path = resume_path.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name
assert last_checkpoint_path.exists(), 'can not find the checkpoint from {:}'.format(last_checkpoint_path)
checkpoint = torch.load( last_checkpoint_path )
start_epoch = checkpoint['epoch'] + 1
search_model.load_state_dict( checkpoint['search_model'] )
scheduler.load_state_dict ( checkpoint['scheduler'] )
base_optimizer.load_state_dict ( checkpoint['base_optimizer'] )
arch_optimizer.load_state_dict ( checkpoint['arch_optimizer'] )
valid_accuracies = checkpoint['valid_accuracies']
arch_genotypes = checkpoint['arch_genotypes']
discrepancies = checkpoint['discrepancies']
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(resume_path, start_epoch))
else:
logger.log("=> do not find the last-info file : {:} or resume : {:}".format(last_info, args.resume))
start_epoch, valid_accuracies, arch_genotypes, discrepancies = 0, {'best': -1}, {}, {}
# main procedure
train_func, valid_func = get_procedures(args.procedure)
total_epoch = optim_config.epochs + optim_config.warmup
start_time, epoch_time = time.time(), AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
search_model.set_tau(args.gumbel_tau_max, args.gumbel_tau_min, epoch*1.0/total_epoch)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch-epoch), True) )
epoch_str = 'epoch={:03d}/{:03d}'.format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
logger.log('\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}, tau={:}, FLOP={:.2f}'.format(time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler, search_model.tau, MAX_FLOP))
# train for one epoch
train_base_loss, train_arch_loss, train_acc1, train_acc5 = train_func(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, \
{'epoch-str' : epoch_str, 'FLOP-exp': MAX_FLOP * args.FLOP_ratio,
'FLOP-weight': args.FLOP_weight, 'FLOP-tolerant': MAX_FLOP * args.FLOP_tolerant}, args.print_freq, logger)
# log the results
logger.log('***{:s}*** TRAIN [{:}] base-loss = {:.6f}, arch-loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}'.format(time_string(), epoch_str, train_base_loss, train_arch_loss, train_acc1, train_acc5))
cur_FLOP, genotype = search_model.get_flop('genotype', model_config._asdict(), None)
arch_genotypes[epoch] = genotype
arch_genotypes['last'] = genotype
logger.log('[{:}] genotype : {:}'.format(epoch_str, genotype))
arch_info, discrepancy = search_model.get_arch_info()
logger.log(arch_info)
discrepancies[epoch] = discrepancy
logger.log('[{:}] FLOP : {:.2f} MB, ratio : {:.4f}, Expected-ratio : {:.4f}, Discrepancy : {:.3f}'.format(epoch_str, cur_FLOP, cur_FLOP/MAX_FLOP, args.FLOP_ratio, np.mean(discrepancy)))
#if cur_FLOP/MAX_FLOP > args.FLOP_ratio:
# init_flop_weight = init_flop_weight * args.FLOP_decay
#else:
# init_flop_weight = init_flop_weight / args.FLOP_decay
# evaluate the performance
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log('-'*150)
valid_loss, valid_acc1, valid_acc5 = valid_func(search_valid_loader, network, criterion, epoch_str, args.print_freq_eval, logger)
valid_accuracies[epoch] = valid_acc1
logger.log('***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}'.format(time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies['best'], 100-valid_accuracies['best']))
if valid_acc1 > valid_accuracies['best']:
valid_accuracies['best'] = valid_acc1
arch_genotypes['best'] = genotype
find_best = True
logger.log('Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.'.format(epoch, valid_acc1, valid_acc5, 100-valid_acc1, 100-valid_acc5, model_best_path))
# save checkpoint
save_path = save_checkpoint({
'epoch' : epoch,
'args' : deepcopy(args),
'valid_accuracies': deepcopy(valid_accuracies),
'model-config' : model_config._asdict(),
'optim-config' : optim_config._asdict(),
'search_model' : search_model.state_dict(),
'scheduler' : scheduler.state_dict(),
'base_optimizer': base_optimizer.state_dict(),
'arch_optimizer': arch_optimizer.state_dict(),
'arch_genotypes': arch_genotypes,
'discrepancies' : discrepancies,
}, model_base_path, logger)
if find_best: copy_checkpoint(model_base_path, model_best_path, logger)
last_info = save_checkpoint({
'epoch': epoch,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log('')
logger.log('-'*100)
last_config_path = logger.path('log') / 'seed-{:}-last.config'.format(args.rand_seed)
configure2str(arch_genotypes['last'], str(last_config_path))
logger.log('save the last config int {:} :\n{:}'.format(last_config_path, arch_genotypes['last']))
best_arch, valid_acc = arch_genotypes['best'], valid_accuracies['best']
for key, config in arch_genotypes.items():
if key == 'last': continue
FLOP_ratio = config['estimated_FLOP'] / MAX_FLOP
if abs(FLOP_ratio - args.FLOP_ratio) <= args.FLOP_tolerant:
if valid_acc < valid_accuracies[key]:
best_arch, valid_acc = config, valid_accuracies[key]
print('Best-Arch : {:}\nRatio={:}, Valid-ACC={:}'.format(best_arch, best_arch['estimated_FLOP'] / MAX_FLOP, valid_acc))
best_config_path = logger.path('log') / 'seed-{:}-best.config'.format(args.rand_seed)
configure2str(best_arch, str(best_config_path))
logger.log('save the last config int {:} :\n{:}'.format(best_config_path, best_arch))
logger.log('\n' + '-'*200)
logger.log('Finish training/validation in {:}, and save final checkpoint into {:}'.format(convert_secs2time(epoch_time.sum, True), logger.path('info')))
logger.close()
if __name__ == '__main__':
args = obtain_args()
main(args)