xautodl/exps/NAS-Bench-201-algos/RANDOM.py
2021-06-03 01:32:00 -07:00

190 lines
7.4 KiB
Python

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
##############################################################################
import os, sys, time, glob, random, argparse
import numpy as np, collections
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
from xautodl.config_utils import load_config, dict2config, configure2str
from xautodl.datasets import get_datasets, SearchDataset
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from xautodl.utils import get_model_infos, obtain_accuracy
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.models import get_search_spaces
from nas_201_api import NASBench201API as API
from R_EA import train_and_eval, random_architecture_func
def main(xargs, nas_bench):
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads(xargs.workers)
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
if xargs.dataset == "cifar10":
dataname = "cifar10-valid"
else:
dataname = xargs.dataset
if xargs.data_path is not None:
train_data, valid_data, xshape, class_num = get_datasets(
xargs.dataset, xargs.data_path, -1
)
split_Fpath = "configs/nas-benchmark/cifar-split.txt"
cifar_split = load_config(split_Fpath, None, None)
train_split, valid_split = cifar_split.train, cifar_split.valid
logger.log("Load split file from {:}".format(split_Fpath))
config_path = "configs/nas-benchmark/algos/R-EA.config"
config = load_config(
config_path, {"class_num": class_num, "xshape": xshape}, logger
)
# To split data
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
# data loader
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
num_workers=xargs.workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
num_workers=xargs.workers,
pin_memory=True,
)
logger.log(
"||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
xargs.dataset, len(train_loader), len(valid_loader), config.batch_size
)
)
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
extra_info = {
"config": config,
"train_loader": train_loader,
"valid_loader": valid_loader,
}
else:
config_path = "configs/nas-benchmark/algos/R-EA.config"
config = load_config(config_path, None, logger)
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
extra_info = {"config": config, "train_loader": None, "valid_loader": None}
search_space = get_search_spaces("cell", xargs.search_space_name)
random_arch = random_architecture_func(xargs.max_nodes, search_space)
# x =random_arch() ; y = mutate_arch(x)
x_start_time = time.time()
logger.log("{:} use nas_bench : {:}".format(time_string(), nas_bench))
best_arch, best_acc, total_time_cost, history = None, -1, 0, []
# for idx in range(xargs.random_num):
while total_time_cost < xargs.time_budget:
arch = random_arch()
accuracy, cost_time = train_and_eval(arch, nas_bench, extra_info, dataname)
if total_time_cost + cost_time > xargs.time_budget:
break
else:
total_time_cost += cost_time
history.append(arch)
if best_arch is None or best_acc < accuracy:
best_acc, best_arch = accuracy, arch
logger.log(
"[{:03d}] : {:} : accuracy = {:.2f}%".format(len(history), arch, accuracy)
)
logger.log(
"{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s (real-cost = {:.3f} s).".format(
time_string(),
best_arch,
best_acc,
len(history),
total_time_cost,
time.time() - x_start_time,
)
)
info = nas_bench.query_by_arch(best_arch, "200")
if info is None:
logger.log("Did not find this architecture : {:}.".format(best_arch))
else:
logger.log("{:}".format(info))
logger.log("-" * 100)
logger.close()
return logger.log_dir, nas_bench.query_index_by_arch(best_arch)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Random NAS")
parser.add_argument("--data_path", type=str, help="Path to dataset")
parser.add_argument(
"--dataset",
type=str,
choices=["cifar10", "cifar100", "ImageNet16-120"],
help="Choose between Cifar10/100 and ImageNet-16.",
)
# channels and number-of-cells
parser.add_argument("--search_space_name", type=str, help="The search space name.")
parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.")
parser.add_argument("--channel", type=int, help="The number of channels.")
parser.add_argument(
"--num_cells", type=int, help="The number of cells in one stage."
)
# parser.add_argument('--random_num', type=int, help='The number of random selected architectures.')
parser.add_argument(
"--time_budget",
type=int,
help="The total time cost budge for searching (in seconds).",
)
# log
parser.add_argument(
"--workers",
type=int,
default=2,
help="number of data loading workers (default: 2)",
)
parser.add_argument(
"--save_dir", type=str, help="Folder to save checkpoints and log."
)
parser.add_argument(
"--arch_nas_dataset",
type=str,
help="The path to load the architecture dataset (tiny-nas-benchmark).",
)
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
parser.add_argument("--rand_seed", type=int, help="manual seed")
args = parser.parse_args()
# if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
nas_bench = None
else:
print(
"{:} build NAS-Benchmark-API from {:}".format(
time_string(), args.arch_nas_dataset
)
)
nas_bench = API(args.arch_nas_dataset)
if args.rand_seed < 0:
save_dir, all_indexes, num = None, [], 500
for i in range(num):
print("{:} : {:03d}/{:03d}".format(time_string(), i, num))
args.rand_seed = random.randint(1, 100000)
save_dir, index = main(args, nas_bench)
all_indexes.append(index)
torch.save(all_indexes, save_dir / "results.pth")
else:
main(args, nas_bench)