158 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			158 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| import torch.nn as nn
 | |
| import torch.nn.functional as F
 | |
| from .initialization import initialize_resnet
 | |
| from .SharedUtils    import additive_func
 | |
| 
 | |
| 
 | |
| class Downsample(nn.Module):  
 | |
| 
 | |
|   def __init__(self, nIn, nOut, stride):
 | |
|     super(Downsample, self).__init__() 
 | |
|     assert stride == 2 and nOut == 2*nIn, 'stride:{} IO:{},{}'.format(stride, nIn, nOut)
 | |
|     self.in_dim  = nIn
 | |
|     self.out_dim = nOut
 | |
|     self.avg  = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)   
 | |
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, padding=0, bias=False)
 | |
| 
 | |
|   def forward(self, x):
 | |
|     x   = self.avg(x)
 | |
|     out = self.conv(x)
 | |
|     return out
 | |
| 
 | |
| 
 | |
| class ConvBNReLU(nn.Module):
 | |
|   
 | |
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, relu):
 | |
|     super(ConvBNReLU, self).__init__()
 | |
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, bias=bias)
 | |
|     self.bn   = nn.BatchNorm2d(nOut)
 | |
|     if relu: self.relu = nn.ReLU(inplace=True)
 | |
|     else   : self.relu = None
 | |
|     self.out_dim = nOut
 | |
|     self.num_conv = 1
 | |
| 
 | |
|   def forward(self, x):
 | |
|     conv = self.conv( x )
 | |
|     bn   = self.bn( conv )
 | |
|     if self.relu: return self.relu( bn )
 | |
|     else        : return bn
 | |
| 
 | |
| 
 | |
| class ResNetBasicblock(nn.Module):
 | |
|   expansion = 1
 | |
|   def __init__(self, inplanes, planes, stride):
 | |
|     super(ResNetBasicblock, self).__init__()
 | |
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
 | |
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, True)
 | |
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, False)
 | |
|     if stride == 2:
 | |
|       self.downsample = Downsample(inplanes, planes, stride)
 | |
|     elif inplanes != planes:
 | |
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, False)
 | |
|     else:
 | |
|       self.downsample = None
 | |
|     self.out_dim = planes
 | |
|     self.num_conv = 2
 | |
| 
 | |
|   def forward(self, inputs):
 | |
| 
 | |
|     basicblock = self.conv_a(inputs)
 | |
|     basicblock = self.conv_b(basicblock)
 | |
| 
 | |
|     if self.downsample is not None:
 | |
|       residual = self.downsample(inputs)
 | |
|     else:
 | |
|       residual = inputs
 | |
|     out = additive_func(residual, basicblock)
 | |
|     return F.relu(out, inplace=True)
 | |
| 
 | |
| 
 | |
| 
 | |
| class ResNetBottleneck(nn.Module):
 | |
|   expansion = 4
 | |
|   def __init__(self, inplanes, planes, stride):
 | |
|     super(ResNetBottleneck, self).__init__()
 | |
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
 | |
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, True)
 | |
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, True)
 | |
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, False)
 | |
|     if stride == 2:
 | |
|       self.downsample = Downsample(inplanes, planes*self.expansion, stride)
 | |
|     elif inplanes != planes*self.expansion:
 | |
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, False)
 | |
|     else:
 | |
|       self.downsample = None
 | |
|     self.out_dim = planes * self.expansion
 | |
|     self.num_conv = 3
 | |
| 
 | |
|   def forward(self, inputs):
 | |
| 
 | |
|     bottleneck = self.conv_1x1(inputs)
 | |
|     bottleneck = self.conv_3x3(bottleneck)
 | |
|     bottleneck = self.conv_1x4(bottleneck)
 | |
| 
 | |
|     if self.downsample is not None:
 | |
|       residual = self.downsample(inputs)
 | |
|     else:
 | |
|       residual = inputs
 | |
|     out = additive_func(residual, bottleneck)
 | |
|     return F.relu(out, inplace=True)
 | |
| 
 | |
| 
 | |
| 
 | |
| class CifarResNet(nn.Module):
 | |
| 
 | |
|   def __init__(self, block_name, depth, num_classes, zero_init_residual):
 | |
|     super(CifarResNet, self).__init__()
 | |
| 
 | |
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
 | |
|     if block_name == 'ResNetBasicblock':
 | |
|       block = ResNetBasicblock
 | |
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
 | |
|       layer_blocks = (depth - 2) // 6
 | |
|     elif block_name == 'ResNetBottleneck':
 | |
|       block = ResNetBottleneck
 | |
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164'
 | |
|       layer_blocks = (depth - 2) // 9
 | |
|     else:
 | |
|       raise ValueError('invalid block : {:}'.format(block_name))
 | |
| 
 | |
|     self.message     = 'CifarResNet : Block : {:}, Depth : {:}, Layers for each block : {:}'.format(block_name, depth, layer_blocks)
 | |
|     self.num_classes = num_classes
 | |
|     self.channels    = [16]
 | |
|     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, True) ] )
 | |
|     for stage in range(3):
 | |
|       for iL in range(layer_blocks):
 | |
|         iC     = self.channels[-1]
 | |
|         planes = 16 * (2**stage)
 | |
|         stride = 2 if stage > 0 and iL == 0 else 1
 | |
|         module = block(iC, planes, stride)
 | |
|         self.channels.append( module.out_dim )
 | |
|         self.layers.append  ( module )
 | |
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
 | |
| 
 | |
|     self.avgpool = nn.AvgPool2d(8)
 | |
|     self.classifier = nn.Linear(module.out_dim, num_classes)
 | |
|     assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
 | |
| 
 | |
|     self.apply(initialize_resnet)
 | |
|     if zero_init_residual:
 | |
|       for m in self.modules():
 | |
|         if isinstance(m, ResNetBasicblock):
 | |
|           nn.init.constant_(m.conv_b.bn.weight, 0)
 | |
|         elif isinstance(m, ResNetBottleneck):
 | |
|           nn.init.constant_(m.conv_1x4.bn.weight, 0)
 | |
| 
 | |
|   def get_message(self):
 | |
|     return self.message
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     x = inputs
 | |
|     for i, layer in enumerate(self.layers):
 | |
|       x = layer( x )
 | |
|     features = self.avgpool(x)
 | |
|     features = features.view(features.size(0), -1)
 | |
|     logits   = self.classifier(features)
 | |
|     return features, logits
 |