72 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
 | |
| #####################################################
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from copy import deepcopy
 | |
| from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR
 | |
| 
 | |
| 
 | |
| # The macro structure is based on NASNet
 | |
| class NASNetonCIFAR(nn.Module):
 | |
| 
 | |
|   def __init__(self, C, N, stem_multiplier, num_classes, genotype, auxiliary, affine=True, track_running_stats=True):
 | |
|     super(NASNetonCIFAR, self).__init__()
 | |
|     self._C        = C
 | |
|     self._layerN   = N
 | |
|     self.stem = nn.Sequential(
 | |
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
 | |
|                     nn.BatchNorm2d(C*stem_multiplier))
 | |
|   
 | |
|     # config for each layer
 | |
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1)
 | |
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
 | |
| 
 | |
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
 | |
|     self.auxiliary_index = None
 | |
|     self.auxiliary_head  = None
 | |
|     self.cells = nn.ModuleList()
 | |
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
 | |
|       cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
 | |
|       self.cells.append( cell )
 | |
|       C_prev_prev, C_prev, reduction_prev = C_prev, cell._multiplier*C_curr, reduction
 | |
|       if reduction and C_curr == C*4 and auxiliary:
 | |
|         self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
 | |
|         self.auxiliary_index = index
 | |
|     self._Layer     = len(self.cells)
 | |
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
 | |
|     self.global_pooling = nn.AdaptiveAvgPool2d(1)
 | |
|     self.classifier = nn.Linear(C_prev, num_classes)
 | |
|     self.drop_path_prob = -1
 | |
| 
 | |
|   def update_drop_path(self, drop_path_prob):
 | |
|     self.drop_path_prob = drop_path_prob
 | |
| 
 | |
|   def auxiliary_param(self):
 | |
|     if self.auxiliary_head is None: return []
 | |
|     else: return list( self.auxiliary_head.parameters() )
 | |
| 
 | |
|   def get_message(self):
 | |
|     string = self.extra_repr()
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
 | |
|     return string
 | |
| 
 | |
|   def extra_repr(self):
 | |
|     return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     stem_feature, logits_aux = self.stem(inputs), None
 | |
|     cell_results = [stem_feature, stem_feature]
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
 | |
|       cell_results.append( cell_feature )
 | |
|       if self.auxiliary_index is not None and i == self.auxiliary_index and self.training:
 | |
|         logits_aux = self.auxiliary_head( cell_results[-1] )
 | |
|     out = self.lastact(cell_results[-1])
 | |
|     out = self.global_pooling( out )
 | |
|     out = out.view(out.size(0), -1)
 | |
|     logits = self.classifier(out)
 | |
|     if logits_aux is None: return out, logits
 | |
|     else: return out, [logits, logits_aux]
 |