98 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			98 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
 | |
| ########################################################
 | |
| # DARTS: Differentiable Architecture Search, ICLR 2019 #
 | |
| ########################################################
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from copy import deepcopy
 | |
| from ..cell_operations import ResNetBasicblock
 | |
| from .search_cells     import NAS201SearchCell as SearchCell
 | |
| from .genotypes        import Structure
 | |
| 
 | |
| 
 | |
| class TinyNetworkDarts(nn.Module):
 | |
| 
 | |
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
 | |
|     super(TinyNetworkDarts, self).__init__()
 | |
|     self._C        = C
 | |
|     self._layerN   = N
 | |
|     self.max_nodes = max_nodes
 | |
|     self.stem = nn.Sequential(
 | |
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
 | |
|                     nn.BatchNorm2d(C))
 | |
|   
 | |
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N    
 | |
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
 | |
| 
 | |
|     C_prev, num_edge, edge2index = C, None, None
 | |
|     self.cells = nn.ModuleList()
 | |
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
 | |
|       if reduction:
 | |
|         cell = ResNetBasicblock(C_prev, C_curr, 2)
 | |
|       else:
 | |
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
 | |
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
 | |
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
 | |
|       self.cells.append( cell )
 | |
|       C_prev = cell.out_dim
 | |
|     self.op_names   = deepcopy( search_space )
 | |
|     self._Layer     = len(self.cells)
 | |
|     self.edge2index = edge2index
 | |
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
 | |
|     self.global_pooling = nn.AdaptiveAvgPool2d(1)
 | |
|     self.classifier = nn.Linear(C_prev, num_classes)
 | |
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
 | |
| 
 | |
|   def get_weights(self):
 | |
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
 | |
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
 | |
|     xlist+= list( self.classifier.parameters() )
 | |
|     return xlist
 | |
| 
 | |
|   def get_alphas(self):
 | |
|     return [self.arch_parameters]
 | |
| 
 | |
|   def show_alphas(self):
 | |
|     with torch.no_grad():
 | |
|       return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() )
 | |
| 
 | |
|   def get_message(self):
 | |
|     string = self.extra_repr()
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
 | |
|     return string
 | |
| 
 | |
|   def extra_repr(self):
 | |
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
 | |
| 
 | |
|   def genotype(self):
 | |
|     genotypes = []
 | |
|     for i in range(1, self.max_nodes):
 | |
|       xlist = []
 | |
|       for j in range(i):
 | |
|         node_str = '{:}<-{:}'.format(i, j)
 | |
|         with torch.no_grad():
 | |
|           weights = self.arch_parameters[ self.edge2index[node_str] ]
 | |
|           op_name = self.op_names[ weights.argmax().item() ]
 | |
|         xlist.append((op_name, j))
 | |
|       genotypes.append( tuple(xlist) )
 | |
|     return Structure( genotypes )
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1)
 | |
| 
 | |
|     feature = self.stem(inputs)
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       if isinstance(cell, SearchCell):
 | |
|         feature = cell(feature, alphas)
 | |
|       else:
 | |
|         feature = cell(feature)
 | |
| 
 | |
|     out = self.lastact(feature)
 | |
|     out = self.global_pooling( out )
 | |
|     out = out.view(out.size(0), -1)
 | |
|     logits = self.classifier(out)
 | |
| 
 | |
|     return out, logits
 |