153 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
 | |
| ######################################################################################
 | |
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
 | |
| ######################################################################################
 | |
| import torch, random
 | |
| import torch.nn as nn
 | |
| from copy import deepcopy
 | |
| from ..cell_operations import ResNetBasicblock
 | |
| from .search_cells     import NAS201SearchCell as SearchCell
 | |
| from .genotypes        import Structure
 | |
| 
 | |
| 
 | |
| class TinyNetworkSETN(nn.Module):
 | |
| 
 | |
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
 | |
|     super(TinyNetworkSETN, self).__init__()
 | |
|     self._C        = C
 | |
|     self._layerN   = N
 | |
|     self.max_nodes = max_nodes
 | |
|     self.stem = nn.Sequential(
 | |
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
 | |
|                     nn.BatchNorm2d(C))
 | |
|   
 | |
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N    
 | |
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
 | |
| 
 | |
|     C_prev, num_edge, edge2index = C, None, None
 | |
|     self.cells = nn.ModuleList()
 | |
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
 | |
|       if reduction:
 | |
|         cell = ResNetBasicblock(C_prev, C_curr, 2)
 | |
|       else:
 | |
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
 | |
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
 | |
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
 | |
|       self.cells.append( cell )
 | |
|       C_prev = cell.out_dim
 | |
|     self.op_names   = deepcopy( search_space )
 | |
|     self._Layer     = len(self.cells)
 | |
|     self.edge2index = edge2index
 | |
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
 | |
|     self.global_pooling = nn.AdaptiveAvgPool2d(1)
 | |
|     self.classifier = nn.Linear(C_prev, num_classes)
 | |
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
 | |
|     self.mode       = 'urs'
 | |
|     self.dynamic_cell = None
 | |
|     
 | |
|   def set_cal_mode(self, mode, dynamic_cell=None):
 | |
|     assert mode in ['urs', 'joint', 'select', 'dynamic']
 | |
|     self.mode = mode
 | |
|     if mode == 'dynamic': self.dynamic_cell = deepcopy( dynamic_cell )
 | |
|     else                : self.dynamic_cell = None
 | |
| 
 | |
|   def get_cal_mode(self):
 | |
|     return self.mode
 | |
| 
 | |
|   def get_weights(self):
 | |
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
 | |
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
 | |
|     xlist+= list( self.classifier.parameters() )
 | |
|     return xlist
 | |
| 
 | |
|   def get_alphas(self):
 | |
|     return [self.arch_parameters]
 | |
| 
 | |
|   def get_message(self):
 | |
|     string = self.extra_repr()
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
 | |
|     return string
 | |
| 
 | |
|   def extra_repr(self):
 | |
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
 | |
| 
 | |
|   def genotype(self):
 | |
|     genotypes = []
 | |
|     for i in range(1, self.max_nodes):
 | |
|       xlist = []
 | |
|       for j in range(i):
 | |
|         node_str = '{:}<-{:}'.format(i, j)
 | |
|         with torch.no_grad():
 | |
|           weights = self.arch_parameters[ self.edge2index[node_str] ]
 | |
|           op_name = self.op_names[ weights.argmax().item() ]
 | |
|         xlist.append((op_name, j))
 | |
|       genotypes.append( tuple(xlist) )
 | |
|     return Structure( genotypes )
 | |
| 
 | |
|   def dync_genotype(self, use_random=False):
 | |
|     genotypes = []
 | |
|     with torch.no_grad():
 | |
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
 | |
|     for i in range(1, self.max_nodes):
 | |
|       xlist = []
 | |
|       for j in range(i):
 | |
|         node_str = '{:}<-{:}'.format(i, j)
 | |
|         if use_random:
 | |
|           op_name  = random.choice(self.op_names)
 | |
|         else:
 | |
|           weights  = alphas_cpu[ self.edge2index[node_str] ]
 | |
|           op_index = torch.multinomial(weights, 1).item()
 | |
|           op_name  = self.op_names[ op_index ]
 | |
|         xlist.append((op_name, j))
 | |
|       genotypes.append( tuple(xlist) )
 | |
|     return Structure( genotypes )
 | |
| 
 | |
|   def get_log_prob(self, arch):
 | |
|     with torch.no_grad():
 | |
|       logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
 | |
|     select_logits = []
 | |
|     for i, node_info in enumerate(arch.nodes):
 | |
|       for op, xin in node_info:
 | |
|         node_str = '{:}<-{:}'.format(i+1, xin)
 | |
|         op_index = self.op_names.index(op)
 | |
|         select_logits.append( logits[self.edge2index[node_str], op_index] )
 | |
|     return sum(select_logits).item()
 | |
| 
 | |
| 
 | |
|   def return_topK(self, K):
 | |
|     archs = Structure.gen_all(self.op_names, self.max_nodes, False)
 | |
|     pairs = [(self.get_log_prob(arch), arch) for arch in archs]
 | |
|     if K < 0 or K >= len(archs): K = len(archs)
 | |
|     sorted_pairs = sorted(pairs, key=lambda x: -x[0])
 | |
|     return_pairs = [sorted_pairs[_][1] for _ in range(K)]
 | |
|     return return_pairs
 | |
| 
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1)
 | |
|     with torch.no_grad():
 | |
|       alphas_cpu = alphas.detach().cpu()
 | |
| 
 | |
|     feature = self.stem(inputs)
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       if isinstance(cell, SearchCell):
 | |
|         if self.mode == 'urs':
 | |
|           feature = cell.forward_urs(feature)
 | |
|         elif self.mode == 'select':
 | |
|           feature = cell.forward_select(feature, alphas_cpu)
 | |
|         elif self.mode == 'joint':
 | |
|           feature = cell.forward_joint(feature, alphas)
 | |
|         elif self.mode == 'dynamic':
 | |
|           feature = cell.forward_dynamic(feature, self.dynamic_cell)
 | |
|         else: raise ValueError('invalid mode={:}'.format(self.mode))
 | |
|       else: feature = cell(feature)
 | |
| 
 | |
|     out = self.lastact(feature)
 | |
|     out = self.global_pooling( out )
 | |
|     out = out.view(out.size(0), -1)
 | |
|     logits = self.classifier(out)
 | |
| 
 | |
|     return out, logits
 |