140 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
 | |
| ######################################################################################
 | |
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
 | |
| ######################################################################################
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from copy import deepcopy
 | |
| from typing import List, Text, Dict
 | |
| from .search_cells     import NASNetSearchCell as SearchCell
 | |
| 
 | |
| 
 | |
| # The macro structure is based on NASNet
 | |
| class NASNetworkSETN(nn.Module):
 | |
| 
 | |
|   def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int,
 | |
|                num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool):
 | |
|     super(NASNetworkSETN, self).__init__()
 | |
|     self._C        = C
 | |
|     self._layerN   = N
 | |
|     self._steps    = steps
 | |
|     self._multiplier = multiplier
 | |
|     self.stem = nn.Sequential(
 | |
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
 | |
|                     nn.BatchNorm2d(C*stem_multiplier))
 | |
|   
 | |
|     # config for each layer
 | |
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1)
 | |
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
 | |
| 
 | |
|     num_edge, edge2index = None, None
 | |
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
 | |
| 
 | |
|     self.cells = nn.ModuleList()
 | |
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
 | |
|       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
 | |
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
 | |
|       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
 | |
|       self.cells.append( cell )
 | |
|       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
 | |
|     self.op_names   = deepcopy( search_space )
 | |
|     self._Layer     = len(self.cells)
 | |
|     self.edge2index = edge2index
 | |
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
 | |
|     self.global_pooling = nn.AdaptiveAvgPool2d(1)
 | |
|     self.classifier = nn.Linear(C_prev, num_classes)
 | |
|     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
 | |
|     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
 | |
|     self.mode = 'urs'
 | |
|     self.dynamic_cell = None
 | |
| 
 | |
|   def set_cal_mode(self, mode, dynamic_cell=None):
 | |
|     assert mode in ['urs', 'joint', 'select', 'dynamic']
 | |
|     self.mode = mode
 | |
|     if mode == 'dynamic':
 | |
|       self.dynamic_cell = deepcopy(dynamic_cell)
 | |
|     else:
 | |
|       self.dynamic_cell = None
 | |
| 
 | |
|   def get_weights(self):
 | |
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
 | |
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
 | |
|     xlist+= list( self.classifier.parameters() )
 | |
|     return xlist
 | |
| 
 | |
|   def get_alphas(self):
 | |
|     return [self.arch_normal_parameters, self.arch_reduce_parameters]
 | |
| 
 | |
|   def show_alphas(self):
 | |
|     with torch.no_grad():
 | |
|       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
 | |
|       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
 | |
|     return '{:}\n{:}'.format(A, B)
 | |
| 
 | |
|   def get_message(self):
 | |
|     string = self.extra_repr()
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
 | |
|     return string
 | |
| 
 | |
|   def extra_repr(self):
 | |
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
 | |
| 
 | |
|   def dync_genotype(self, use_random=False):
 | |
|     genotypes = []
 | |
|     with torch.no_grad():
 | |
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
 | |
|     for i in range(1, self.max_nodes):
 | |
|       xlist = []
 | |
|       for j in range(i):
 | |
|         node_str = '{:}<-{:}'.format(i, j)
 | |
|         if use_random:
 | |
|           op_name  = random.choice(self.op_names)
 | |
|         else:
 | |
|           weights  = alphas_cpu[ self.edge2index[node_str] ]
 | |
|           op_index = torch.multinomial(weights, 1).item()
 | |
|           op_name  = self.op_names[ op_index ]
 | |
|         xlist.append((op_name, j))
 | |
|       genotypes.append( tuple(xlist) )
 | |
|     return Structure( genotypes )
 | |
| 
 | |
|   def genotype(self):
 | |
|     def _parse(weights):
 | |
|       gene = []
 | |
|       for i in range(self._steps):
 | |
|         edges = []
 | |
|         for j in range(2+i):
 | |
|           node_str = '{:}<-{:}'.format(i, j)
 | |
|           ws = weights[ self.edge2index[node_str] ]
 | |
|           for k, op_name in enumerate(self.op_names):
 | |
|             if op_name == 'none': continue
 | |
|             edges.append( (op_name, j, ws[k]) )
 | |
|         edges = sorted(edges, key=lambda x: -x[-1])
 | |
|         selected_edges = edges[:2]
 | |
|         gene.append( tuple(selected_edges) )
 | |
|       return gene
 | |
|     with torch.no_grad():
 | |
|       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
 | |
|       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
 | |
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
 | |
|             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1)
 | |
|     reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1)
 | |
| 
 | |
|     s0 = s1 = self.stem(inputs)
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       # [TODO]
 | |
|       raise NotImplementedError
 | |
|       if cell.reduction: hardwts, index = reduce_hardwts, reduce_index
 | |
|       else             : hardwts, index = normal_hardwts, normal_index
 | |
|       s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
 | |
|     out = self.lastact(s1)
 | |
|     out = self.global_pooling( out )
 | |
|     out = out.view(out.size(0), -1)
 | |
|     logits = self.classifier(out)
 | |
| 
 | |
|     return out, logits
 |