123 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			123 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
 | |
| #####################################################
 | |
| # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
 | |
| from torch import nn
 | |
| from ..initialization import initialize_resnet
 | |
| from ..SharedUtils    import parse_channel_info
 | |
| 
 | |
| 
 | |
| class ConvBNReLU(nn.Module):
 | |
|   def __init__(self, in_planes, out_planes, kernel_size, stride, groups, has_bn=True, has_relu=True):
 | |
|     super(ConvBNReLU, self).__init__()
 | |
|     padding = (kernel_size - 1) // 2
 | |
|     self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False)
 | |
|     if has_bn: self.bn = nn.BatchNorm2d(out_planes)
 | |
|     else     : self.bn = None
 | |
|     if has_relu: self.relu = nn.ReLU6(inplace=True)
 | |
|     else       : self.relu = None
 | |
|   
 | |
|   def forward(self, x):
 | |
|     out = self.conv( x )
 | |
|     if self.bn:   out = self.bn  ( out )
 | |
|     if self.relu: out = self.relu( out )
 | |
|     return out
 | |
| 
 | |
| 
 | |
| class InvertedResidual(nn.Module):
 | |
|   def __init__(self, channels, stride, expand_ratio, additive):
 | |
|     super(InvertedResidual, self).__init__()
 | |
|     self.stride = stride
 | |
|     assert stride in [1, 2], 'invalid stride : {:}'.format(stride)
 | |
|     assert len(channels) in [2, 3], 'invalid channels : {:}'.format(channels)
 | |
| 
 | |
|     if len(channels) == 2:
 | |
|       layers = []
 | |
|     else:
 | |
|       layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)]
 | |
|     layers.extend([
 | |
|       # dw
 | |
|       ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]),
 | |
|       # pw-linear
 | |
|       ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False),
 | |
|     ])
 | |
|     self.conv = nn.Sequential(*layers)
 | |
|     self.additive = additive
 | |
|     if self.additive and channels[0] != channels[-1]:
 | |
|       self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False)
 | |
|     else:
 | |
|       self.shortcut = None
 | |
|     self.out_dim  = channels[-1]
 | |
| 
 | |
|   def forward(self, x):
 | |
|     out = self.conv(x)
 | |
|     # if self.additive: return additive_func(out, x)
 | |
|     if self.shortcut: return out + self.shortcut(x)
 | |
|     else            : return out
 | |
| 
 | |
| 
 | |
| class InferMobileNetV2(nn.Module):
 | |
|   def __init__(self, num_classes, xchannels, xblocks, dropout):
 | |
|     super(InferMobileNetV2, self).__init__()
 | |
|     block = InvertedResidual
 | |
|     inverted_residual_setting = [
 | |
|       # t, c,  n, s
 | |
|       [1, 16 , 1, 1],
 | |
|       [6, 24 , 2, 2],
 | |
|       [6, 32 , 3, 2],
 | |
|       [6, 64 , 4, 2],
 | |
|       [6, 96 , 3, 1],
 | |
|       [6, 160, 3, 2],
 | |
|       [6, 320, 1, 1],
 | |
|     ]
 | |
|     assert len(inverted_residual_setting) == len(xblocks), 'invalid number of layers : {:} vs {:}'.format(len(inverted_residual_setting), len(xblocks))
 | |
|     for block_num, ir_setting in zip(xblocks, inverted_residual_setting):
 | |
|       assert block_num <= ir_setting[2], '{:} vs {:}'.format(block_num, ir_setting)
 | |
|     xchannels = parse_channel_info(xchannels)
 | |
|     #for i, chs in enumerate(xchannels):
 | |
|     #  if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs)
 | |
|     self.xchannels = xchannels
 | |
|     self.message     = 'InferMobileNetV2 : xblocks={:}'.format(xblocks)
 | |
|     # building first layer
 | |
|     features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)]
 | |
|     last_channel_idx = 1
 | |
| 
 | |
|     # building inverted residual blocks
 | |
|     for stage, (t, c, n, s) in enumerate(inverted_residual_setting):
 | |
|       for i in range(n):
 | |
|         stride = s if i == 0 else 1
 | |
|         additv = True if i > 0 else False
 | |
|         module = block(self.xchannels[last_channel_idx], stride, t, additv)
 | |
|         features.append(module)
 | |
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format(stage, i, n, len(features), self.xchannels[last_channel_idx], stride, t, c)
 | |
|         last_channel_idx += 1
 | |
|         if i + 1 == xblocks[stage]:
 | |
|           out_channel = module.out_dim
 | |
|           for iiL in range(i+1, n):
 | |
|             last_channel_idx += 1
 | |
|           self.xchannels[last_channel_idx][0] = module.out_dim
 | |
|           break
 | |
|     # building last several layers
 | |
|     features.append(ConvBNReLU(self.xchannels[last_channel_idx][0], self.xchannels[last_channel_idx][1], 1, 1, 1))
 | |
|     assert last_channel_idx + 2 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels))
 | |
|     # make it nn.Sequential
 | |
|     self.features = nn.Sequential(*features)
 | |
| 
 | |
|     # building classifier
 | |
|     self.classifier = nn.Sequential(
 | |
|       nn.Dropout(dropout),
 | |
|       nn.Linear(self.xchannels[last_channel_idx][1], num_classes),
 | |
|     )
 | |
| 
 | |
|     # weight initialization
 | |
|     self.apply( initialize_resnet )
 | |
| 
 | |
|   def get_message(self):
 | |
|     return self.message
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     features = self.features(inputs)
 | |
|     vectors  = features.mean([2, 3])
 | |
|     predicts = self.classifier(vectors)
 | |
|     return features, predicts
 |