341 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			341 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
 | |
| ##################################################
 | |
| import math, torch
 | |
| from collections import OrderedDict
 | |
| from bisect import bisect_right
 | |
| import torch.nn as nn
 | |
| from ..initialization import initialize_resnet
 | |
| from ..SharedUtils    import additive_func
 | |
| from .SoftSelect      import select2withP, ChannelWiseInter
 | |
| from .SoftSelect      import linear_forward
 | |
| from .SoftSelect      import get_width_choices
 | |
| 
 | |
| 
 | |
| def get_depth_choices(nDepth, return_num):
 | |
|   if nDepth == 2:
 | |
|     choices = (1, 2)
 | |
|   elif nDepth == 3:
 | |
|     choices = (1, 2, 3)
 | |
|   elif nDepth > 3:
 | |
|     choices = list(range(1, nDepth+1, 2))
 | |
|     if choices[-1] < nDepth: choices.append(nDepth)
 | |
|   else:
 | |
|     raise ValueError('invalid nDepth : {:}'.format(nDepth))
 | |
|   if return_num: return len(choices)
 | |
|   else         : return choices
 | |
| 
 | |
| 
 | |
| 
 | |
| class ConvBNReLU(nn.Module):
 | |
|   num_conv  = 1
 | |
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
 | |
|     super(ConvBNReLU, self).__init__()
 | |
|     self.InShape  = None
 | |
|     self.OutShape = None
 | |
|     self.choices  = get_width_choices(nOut)
 | |
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
 | |
| 
 | |
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
 | |
|     else       : self.avg = None
 | |
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
 | |
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut)
 | |
|     else       : self.bn  = None
 | |
|     if has_relu: self.relu = nn.ReLU(inplace=False)
 | |
|     else       : self.relu = None
 | |
|     self.in_dim   = nIn
 | |
|     self.out_dim  = nOut
 | |
| 
 | |
|   def get_flops(self, divide=1):
 | |
|     iC, oC = self.in_dim, self.out_dim
 | |
|     assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
 | |
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
 | |
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
 | |
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
 | |
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
 | |
|     all_positions = self.OutShape[0] * self.OutShape[1]
 | |
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC
 | |
|     if self.conv.bias is not None: flops += all_positions / divide
 | |
|     return flops
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     if self.avg : out = self.avg( inputs )
 | |
|     else        : out = inputs
 | |
|     conv = self.conv( out )
 | |
|     if self.bn  : out = self.bn( conv )
 | |
|     else        : out = conv
 | |
|     if self.relu: out = self.relu( out )
 | |
|     else        : out = out
 | |
|     if self.InShape is None:
 | |
|       self.InShape  = (inputs.size(-2), inputs.size(-1))
 | |
|       self.OutShape = (out.size(-2)   , out.size(-1))
 | |
|     return out
 | |
| 
 | |
| 
 | |
| class ResNetBasicblock(nn.Module):
 | |
|   expansion = 1
 | |
|   num_conv  = 2
 | |
|   def __init__(self, inplanes, planes, stride):
 | |
|     super(ResNetBasicblock, self).__init__()
 | |
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
 | |
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
 | |
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False)
 | |
|     if stride == 2:
 | |
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
 | |
|     elif inplanes != planes:
 | |
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
 | |
|     else:
 | |
|       self.downsample = None
 | |
|     self.out_dim     = planes
 | |
|     self.search_mode = 'basic'
 | |
| 
 | |
|   def get_flops(self, divide=1):
 | |
|     flop_A = self.conv_a.get_flops(divide)
 | |
|     flop_B = self.conv_b.get_flops(divide)
 | |
|     if hasattr(self.downsample, 'get_flops'):
 | |
|       flop_C = self.downsample.get_flops(divide)
 | |
|     else:
 | |
|       flop_C = 0
 | |
|     return flop_A + flop_B + flop_C
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     basicblock = self.conv_a(inputs)
 | |
|     basicblock = self.conv_b(basicblock)
 | |
|     if self.downsample is not None: residual = self.downsample(inputs)
 | |
|     else                          : residual = inputs
 | |
|     out = additive_func(residual, basicblock)
 | |
|     return nn.functional.relu(out, inplace=True)
 | |
| 
 | |
| 
 | |
| 
 | |
| class ResNetBottleneck(nn.Module):
 | |
|   expansion = 4
 | |
|   num_conv  = 3
 | |
|   def __init__(self, inplanes, planes, stride):
 | |
|     super(ResNetBottleneck, self).__init__()
 | |
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
 | |
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True)
 | |
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
 | |
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
 | |
|     if stride == 2:
 | |
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
 | |
|     elif inplanes != planes*self.expansion:
 | |
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
 | |
|     else:
 | |
|       self.downsample = None
 | |
|     self.out_dim     = planes * self.expansion
 | |
|     self.search_mode = 'basic'
 | |
| 
 | |
|   def get_range(self):
 | |
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
 | |
| 
 | |
|   def get_flops(self, divide):
 | |
|     flop_A = self.conv_1x1.get_flops(divide)
 | |
|     flop_B = self.conv_3x3.get_flops(divide)
 | |
|     flop_C = self.conv_1x4.get_flops(divide)
 | |
|     if hasattr(self.downsample, 'get_flops'):
 | |
|       flop_D = self.downsample.get_flops(divide)
 | |
|     else:
 | |
|       flop_D = 0
 | |
|     return flop_A + flop_B + flop_C + flop_D
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     bottleneck = self.conv_1x1(inputs)
 | |
|     bottleneck = self.conv_3x3(bottleneck)
 | |
|     bottleneck = self.conv_1x4(bottleneck)
 | |
|     if self.downsample is not None: residual = self.downsample(inputs)
 | |
|     else                          : residual = inputs
 | |
|     out = additive_func(residual, bottleneck)
 | |
|     return nn.functional.relu(out, inplace=True)
 | |
| 
 | |
| 
 | |
| class SearchDepthCifarResNet(nn.Module):
 | |
| 
 | |
|   def __init__(self, block_name, depth, num_classes):
 | |
|     super(SearchDepthCifarResNet, self).__init__()
 | |
| 
 | |
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
 | |
|     if block_name == 'ResNetBasicblock':
 | |
|       block = ResNetBasicblock
 | |
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
 | |
|       layer_blocks = (depth - 2) // 6
 | |
|     elif block_name == 'ResNetBottleneck':
 | |
|       block = ResNetBottleneck
 | |
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164'
 | |
|       layer_blocks = (depth - 2) // 9
 | |
|     else:
 | |
|       raise ValueError('invalid block : {:}'.format(block_name))
 | |
| 
 | |
|     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
 | |
|     self.num_classes  = num_classes
 | |
|     self.channels     = [16]
 | |
|     self.layers       = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
 | |
|     self.InShape      = None
 | |
|     self.depth_info   = OrderedDict()
 | |
|     self.depth_at_i   = OrderedDict()
 | |
|     for stage in range(3):
 | |
|       cur_block_choices = get_depth_choices(layer_blocks, False)
 | |
|       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks)
 | |
|       self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks)
 | |
|       block_choices, xstart = [], len(self.layers)
 | |
|       for iL in range(layer_blocks):
 | |
|         iC     = self.channels[-1]
 | |
|         planes = 16 * (2**stage)
 | |
|         stride = 2 if stage > 0 and iL == 0 else 1
 | |
|         module = block(iC, planes, stride)
 | |
|         self.channels.append( module.out_dim )
 | |
|         self.layers.append  ( module )
 | |
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
 | |
|         # added for depth
 | |
|         layer_index = len(self.layers) - 1
 | |
|         if iL + 1 in cur_block_choices: block_choices.append( layer_index )
 | |
|         if iL + 1 == layer_blocks:
 | |
|           self.depth_info[layer_index] = {'choices': block_choices,
 | |
|                                           'stage'  : stage,
 | |
|                                           'xstart' : xstart}
 | |
|     self.depth_info_list = []
 | |
|     for xend, info in self.depth_info.items():
 | |
|       self.depth_info_list.append( (xend, info) )
 | |
|       xstart, xstage = info['xstart'], info['stage']
 | |
|       for ilayer in range(xstart, xend+1):
 | |
|         idx = bisect_right(info['choices'], ilayer-1)
 | |
|         self.depth_at_i[ilayer] = (xstage, idx)
 | |
| 
 | |
|     self.avgpool     = nn.AvgPool2d(8)
 | |
|     self.classifier  = nn.Linear(module.out_dim, num_classes)
 | |
|     self.InShape     = None
 | |
|     self.tau         = -1
 | |
|     self.search_mode = 'basic'
 | |
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
 | |
|     
 | |
| 
 | |
|     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))))
 | |
|     nn.init.normal_(self.depth_attentions, 0, 0.01)
 | |
|     self.apply(initialize_resnet)
 | |
| 
 | |
|   def arch_parameters(self):
 | |
|     return [self.depth_attentions]
 | |
| 
 | |
|   def base_parameters(self):
 | |
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
 | |
| 
 | |
|   def get_flop(self, mode, config_dict, extra_info):
 | |
|     if config_dict is not None: config_dict = config_dict.copy()
 | |
|     # select depth
 | |
|     if mode == 'genotype':
 | |
|       with torch.no_grad():
 | |
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
 | |
|         choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
 | |
|     elif mode == 'max':
 | |
|       choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))]
 | |
|     elif mode == 'random':
 | |
|       with torch.no_grad():
 | |
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
 | |
|         choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
 | |
|     else:
 | |
|       raise ValueError('invalid mode : {:}'.format(mode))
 | |
|     selected_layers = []
 | |
|     for choice, xvalue in zip(choices, self.depth_info_list):
 | |
|       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1
 | |
|       selected_layers.append(xtemp)
 | |
|     flop = 0
 | |
|     for i, layer in enumerate(self.layers):
 | |
|       if i in self.depth_at_i:
 | |
|         xstagei, xatti = self.depth_at_i[i]
 | |
|         if xatti <= choices[xstagei]: # leave this depth
 | |
|           flop+= layer.get_flops()
 | |
|         else:
 | |
|           flop+= 0 # do not use this layer
 | |
|       else:
 | |
|         flop+= layer.get_flops()
 | |
|     # the last fc layer
 | |
|     flop += self.classifier.in_features * self.classifier.out_features
 | |
|     if config_dict is None:
 | |
|       return flop / 1e6
 | |
|     else:
 | |
|       config_dict['xblocks']    = selected_layers
 | |
|       config_dict['super_type'] = 'infer-depth'
 | |
|       config_dict['estimated_FLOP'] = flop / 1e6
 | |
|       return flop / 1e6, config_dict
 | |
| 
 | |
|   def get_arch_info(self):
 | |
|     string = "for depth, there are {:} attention probabilities.".format(len(self.depth_attentions))
 | |
|     string+= '\n{:}'.format(self.depth_info)
 | |
|     discrepancy = []
 | |
|     with torch.no_grad():
 | |
|       for i, att in enumerate(self.depth_attentions):
 | |
|         prob = nn.functional.softmax(att, dim=0)
 | |
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
 | |
|         prob = ['{:.3f}'.format(x) for x in prob]
 | |
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob))
 | |
|         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()]
 | |
|         xstring += '  ||  {:17s}'.format(' '.join(logt))
 | |
|         prob = sorted( [float(x) for x in prob] )
 | |
|         disc = prob[-1] - prob[-2]
 | |
|         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
 | |
|         discrepancy.append( disc )
 | |
|         string += '\n{:}'.format(xstring)
 | |
|     return string, discrepancy
 | |
| 
 | |
|   def set_tau(self, tau_max, tau_min, epoch_ratio):
 | |
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
 | |
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
 | |
|     self.tau = tau
 | |
| 
 | |
|   def get_message(self):
 | |
|     return self.message
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     if self.search_mode == 'basic':
 | |
|       return self.basic_forward(inputs)
 | |
|     elif self.search_mode == 'search':
 | |
|       return self.search_forward(inputs)
 | |
|     else:
 | |
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
 | |
| 
 | |
|   def search_forward(self, inputs):
 | |
|     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
 | |
|     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] )
 | |
|     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
 | |
| 
 | |
|     x, flops = inputs, []
 | |
|     feature_maps = []
 | |
|     for i, layer in enumerate(self.layers):
 | |
|       layer_i = layer( x )
 | |
|       feature_maps.append( layer_i )
 | |
|       if i in self.depth_info: # aggregate the information
 | |
|         choices = self.depth_info[i]['choices']
 | |
|         xstagei = self.depth_info[i]['stage']
 | |
|         possible_tensors = []
 | |
|         for tempi, A in enumerate(choices):
 | |
|           xtensor = feature_maps[A]
 | |
|           possible_tensors.append( xtensor )
 | |
|         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) )
 | |
|         x = weighted_sum
 | |
|       else:
 | |
|         x = layer_i
 | |
|        
 | |
|       if i in self.depth_at_i:
 | |
|         xstagei, xatti = self.depth_at_i[i]
 | |
|         #print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
 | |
|         x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(1e6)
 | |
|       else:
 | |
|         x_expected_flop = layer.get_flops(1e6)
 | |
|       flops.append( x_expected_flop )
 | |
|     flops.append( (self.classifier.in_features * self.classifier.out_features*1.0/1e6) )
 | |
| 
 | |
|     features = self.avgpool(x)
 | |
|     features = features.view(features.size(0), -1)
 | |
|     logits   = linear_forward(features, self.classifier)
 | |
|     return logits, torch.stack( [sum(flops)] )
 | |
| 
 | |
|   def basic_forward(self, inputs):
 | |
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
 | |
|     x = inputs
 | |
|     for i, layer in enumerate(self.layers):
 | |
|       x = layer( x )
 | |
|     features = self.avgpool(x)
 | |
|     features = features.view(features.size(0), -1)
 | |
|     logits   = self.classifier(features)
 | |
|     return features, logits
 |