320 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			320 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#####################################################
 | 
						|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
 | 
						|
#####################################################
 | 
						|
# python exps/GeMOSA/baselines/maml-nof.py --env_version v1 --hidden_dim 16 --inner_step 5 --device cuda
 | 
						|
# python exps/GeMOSA/baselines/maml-nof.py --env_version v2 --hidden_dim 16 --inner_step 5 --device cuda
 | 
						|
# python exps/GeMOSA/baselines/maml-nof.py --env_version v3 --hidden_dim 32 --inner_step 5 --device cuda
 | 
						|
# python exps/GeMOSA/baselines/maml-nof.py --env_version v4 --hidden_dim 32 --inner_step 5 --device cuda
 | 
						|
#####################################################
 | 
						|
import sys, time, copy, torch, random, argparse
 | 
						|
from tqdm import tqdm
 | 
						|
from copy import deepcopy
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve()
 | 
						|
print(lib_dir)
 | 
						|
if str(lib_dir) not in sys.path:
 | 
						|
    sys.path.insert(0, str(lib_dir))
 | 
						|
from xautodl.procedures import (
 | 
						|
    prepare_seed,
 | 
						|
    prepare_logger,
 | 
						|
    save_checkpoint,
 | 
						|
    copy_checkpoint,
 | 
						|
)
 | 
						|
from xautodl.log_utils import time_string
 | 
						|
from xautodl.log_utils import AverageMeter, convert_secs2time
 | 
						|
 | 
						|
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, Top1AccMetric
 | 
						|
from xautodl.datasets.synthetic_core import get_synthetic_env
 | 
						|
from xautodl.models.xcore import get_model
 | 
						|
from xautodl.xlayers import super_core
 | 
						|
 | 
						|
 | 
						|
class MAML:
 | 
						|
    """A LFNA meta-model that uses the MLP as delta-net."""
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self, network, criterion, epochs, meta_lr, inner_lr=0.01, inner_step=1
 | 
						|
    ):
 | 
						|
        self.criterion = criterion
 | 
						|
        self.network = network
 | 
						|
        self.meta_optimizer = torch.optim.Adam(
 | 
						|
            self.network.parameters(), lr=meta_lr, amsgrad=True
 | 
						|
        )
 | 
						|
        self.inner_lr = inner_lr
 | 
						|
        self.inner_step = inner_step
 | 
						|
        self._best_info = dict(state_dict=None, iepoch=None, score=None)
 | 
						|
        print("There are {:} weights.".format(self.network.get_w_container().numel()))
 | 
						|
 | 
						|
    def adapt(self, x, y):
 | 
						|
        # create a container for the future timestamp
 | 
						|
        container = self.network.get_w_container()
 | 
						|
 | 
						|
        for k in range(0, self.inner_step):
 | 
						|
            y_hat = self.network.forward_with_container(x, container)
 | 
						|
            loss = self.criterion(y_hat, y)
 | 
						|
            grads = torch.autograd.grad(loss, container.parameters())
 | 
						|
            container = container.additive([-self.inner_lr * grad for grad in grads])
 | 
						|
        return container
 | 
						|
 | 
						|
    def predict(self, x, container=None):
 | 
						|
        if container is not None:
 | 
						|
            y_hat = self.network.forward_with_container(x, container)
 | 
						|
        else:
 | 
						|
            y_hat = self.network(x)
 | 
						|
        return y_hat
 | 
						|
 | 
						|
    def step(self):
 | 
						|
        torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0)
 | 
						|
        self.meta_optimizer.step()
 | 
						|
 | 
						|
    def zero_grad(self):
 | 
						|
        self.meta_optimizer.zero_grad()
 | 
						|
 | 
						|
    def load_state_dict(self, state_dict):
 | 
						|
        self.criterion.load_state_dict(state_dict["criterion"])
 | 
						|
        self.network.load_state_dict(state_dict["network"])
 | 
						|
        self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"])
 | 
						|
 | 
						|
    def state_dict(self):
 | 
						|
        state_dict = dict()
 | 
						|
        state_dict["criterion"] = self.criterion.state_dict()
 | 
						|
        state_dict["network"] = self.network.state_dict()
 | 
						|
        state_dict["meta_optimizer"] = self.meta_optimizer.state_dict()
 | 
						|
        return state_dict
 | 
						|
 | 
						|
    def save_best(self, score):
 | 
						|
        success, best_score = self.network.save_best(score)
 | 
						|
        return success, best_score
 | 
						|
 | 
						|
    def load_best(self):
 | 
						|
        self.network.load_best()
 | 
						|
 | 
						|
 | 
						|
def main(args):
 | 
						|
    prepare_seed(args.rand_seed)
 | 
						|
    logger = prepare_logger(args)
 | 
						|
    train_env = get_synthetic_env(mode="train", version=args.env_version)
 | 
						|
    valid_env = get_synthetic_env(mode="valid", version=args.env_version)
 | 
						|
    trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
 | 
						|
    test_env = get_synthetic_env(mode="test", version=args.env_version)
 | 
						|
    all_env = get_synthetic_env(mode=None, version=args.env_version)
 | 
						|
    logger.log("The training enviornment: {:}".format(train_env))
 | 
						|
    logger.log("The validation enviornment: {:}".format(valid_env))
 | 
						|
    logger.log("The trainval enviornment: {:}".format(trainval_env))
 | 
						|
    logger.log("The total enviornment: {:}".format(all_env))
 | 
						|
    logger.log("The test enviornment: {:}".format(test_env))
 | 
						|
    model_kwargs = dict(
 | 
						|
        config=dict(model_type="norm_mlp"),
 | 
						|
        input_dim=all_env.meta_info["input_dim"],
 | 
						|
        output_dim=all_env.meta_info["output_dim"],
 | 
						|
        hidden_dims=[args.hidden_dim] * 2,
 | 
						|
        act_cls="relu",
 | 
						|
        norm_cls="layer_norm_1d",
 | 
						|
    )
 | 
						|
 | 
						|
    model = get_model(**model_kwargs)
 | 
						|
    model = model.to(args.device)
 | 
						|
    if all_env.meta_info["task"] == "regression":
 | 
						|
        criterion = torch.nn.MSELoss()
 | 
						|
        metric_cls = MSEMetric
 | 
						|
    elif all_env.meta_info["task"] == "classification":
 | 
						|
        criterion = torch.nn.CrossEntropyLoss()
 | 
						|
        metric_cls = Top1AccMetric
 | 
						|
    else:
 | 
						|
        raise ValueError(
 | 
						|
            "This task ({:}) is not supported.".format(all_env.meta_info["task"])
 | 
						|
        )
 | 
						|
 | 
						|
    maml = MAML(
 | 
						|
        model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step
 | 
						|
    )
 | 
						|
 | 
						|
    # meta-training
 | 
						|
    last_success_epoch = 0
 | 
						|
    per_epoch_time, start_time = AverageMeter(), time.time()
 | 
						|
    for iepoch in range(args.epochs):
 | 
						|
        need_time = "Time Left: {:}".format(
 | 
						|
            convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
 | 
						|
        )
 | 
						|
        head_str = (
 | 
						|
            "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
 | 
						|
            + need_time
 | 
						|
        )
 | 
						|
 | 
						|
        maml.zero_grad()
 | 
						|
        meta_losses = []
 | 
						|
        for ibatch in range(args.meta_batch):
 | 
						|
            future_idx = random.randint(0, len(trainval_env) - 1)
 | 
						|
            future_t, (future_x, future_y) = trainval_env[future_idx]
 | 
						|
            # -->>
 | 
						|
            seq_times = trainval_env.get_seq_times(future_idx, args.seq_length)
 | 
						|
            _, (allxs, allys) = trainval_env.seq_call(seq_times)
 | 
						|
            allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
 | 
						|
            if trainval_env.meta_info["task"] == "classification":
 | 
						|
                allys = allys.view(-1)
 | 
						|
            historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
 | 
						|
            future_container = maml.adapt(historical_x, historical_y)
 | 
						|
 | 
						|
            future_x, future_y = future_x.to(args.device), future_y.to(args.device)
 | 
						|
            future_y_hat = maml.predict(future_x, future_container)
 | 
						|
            future_loss = maml.criterion(future_y_hat, future_y)
 | 
						|
            meta_losses.append(future_loss)
 | 
						|
        meta_loss = torch.stack(meta_losses).mean()
 | 
						|
        meta_loss.backward()
 | 
						|
        maml.step()
 | 
						|
 | 
						|
        logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item()))
 | 
						|
        success, best_score = maml.save_best(-meta_loss.item())
 | 
						|
        if success:
 | 
						|
            logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
 | 
						|
            save_checkpoint(maml.state_dict(), logger.path("model"), logger)
 | 
						|
            last_success_epoch = iepoch
 | 
						|
        if iepoch - last_success_epoch >= args.early_stop_thresh:
 | 
						|
            logger.log("Early stop at {:}".format(iepoch))
 | 
						|
            break
 | 
						|
 | 
						|
        per_epoch_time.update(time.time() - start_time)
 | 
						|
        start_time = time.time()
 | 
						|
 | 
						|
    # meta-test
 | 
						|
    maml.load_best()
 | 
						|
 | 
						|
    def finetune(index):
 | 
						|
        seq_times = test_env.get_seq_times(index, args.seq_length)
 | 
						|
        _, (allxs, allys) = test_env.seq_call(seq_times)
 | 
						|
        allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
 | 
						|
        if test_env.meta_info["task"] == "classification":
 | 
						|
            allys = allys.view(-1)
 | 
						|
        historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
 | 
						|
        future_container = maml.adapt(historical_x, historical_y)
 | 
						|
 | 
						|
        historical_y_hat = maml.predict(historical_x, future_container)
 | 
						|
        train_metric = metric_cls(True)
 | 
						|
        # model.analyze_weights()
 | 
						|
        with torch.no_grad():
 | 
						|
            train_metric(historical_y_hat, historical_y)
 | 
						|
        train_results = train_metric.get_info()
 | 
						|
        return train_results, future_container
 | 
						|
 | 
						|
    train_results, future_container = finetune(0)
 | 
						|
 | 
						|
    metric = metric_cls(True)
 | 
						|
    per_timestamp_time, start_time = AverageMeter(), time.time()
 | 
						|
    for idx, (future_time, (future_x, future_y)) in enumerate(test_env):
 | 
						|
 | 
						|
        need_time = "Time Left: {:}".format(
 | 
						|
            convert_secs2time(per_timestamp_time.avg * (len(test_env) - idx), True)
 | 
						|
        )
 | 
						|
        logger.log(
 | 
						|
            "[{:}]".format(time_string())
 | 
						|
            + " [{:04d}/{:04d}]".format(idx, len(test_env))
 | 
						|
            + " "
 | 
						|
            + need_time
 | 
						|
        )
 | 
						|
 | 
						|
        # build optimizer
 | 
						|
        future_x, future_y = future_x.to(args.device), future_y.to(args.device)
 | 
						|
        future_y_hat = maml.predict(future_x, future_container)
 | 
						|
        future_loss = criterion(future_y_hat, future_y)
 | 
						|
        metric(future_y_hat, future_y)
 | 
						|
        log_str = (
 | 
						|
            "[{:}]".format(time_string())
 | 
						|
            + " [{:04d}/{:04d}]".format(idx, len(test_env))
 | 
						|
            + " train-score: {:.5f}, eval-score: {:.5f}".format(
 | 
						|
                train_results["score"], metric.get_info()["score"]
 | 
						|
            )
 | 
						|
        )
 | 
						|
        logger.log(log_str)
 | 
						|
        logger.log("")
 | 
						|
        per_timestamp_time.update(time.time() - start_time)
 | 
						|
        start_time = time.time()
 | 
						|
 | 
						|
    logger.log("-" * 200 + "\n")
 | 
						|
    logger.close()
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser("Use the maml.")
 | 
						|
    parser.add_argument(
 | 
						|
        "--save_dir",
 | 
						|
        type=str,
 | 
						|
        default="./outputs/GeMOSA-synthetic/use-maml-nft",
 | 
						|
        help="The checkpoint directory.",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--env_version",
 | 
						|
        type=str,
 | 
						|
        required=True,
 | 
						|
        help="The synthetic enviornment version.",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--hidden_dim",
 | 
						|
        type=int,
 | 
						|
        default=16,
 | 
						|
        help="The hidden dimension.",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--meta_lr",
 | 
						|
        type=float,
 | 
						|
        default=0.02,
 | 
						|
        help="The learning rate for the MAML optimizer (default is Adam)",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--inner_lr",
 | 
						|
        type=float,
 | 
						|
        default=0.005,
 | 
						|
        help="The learning rate for the inner optimization",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--inner_step", type=int, default=1, help="The inner loop steps for MAML."
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--seq_length", type=int, default=20, help="The sequence length."
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--meta_batch",
 | 
						|
        type=int,
 | 
						|
        default=256,
 | 
						|
        help="The batch size for the meta-model",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--epochs",
 | 
						|
        type=int,
 | 
						|
        default=2000,
 | 
						|
        help="The total number of epochs.",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--early_stop_thresh",
 | 
						|
        type=int,
 | 
						|
        default=50,
 | 
						|
        help="The maximum epochs for early stop.",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--device",
 | 
						|
        type=str,
 | 
						|
        default="cpu",
 | 
						|
        help="",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--workers",
 | 
						|
        type=int,
 | 
						|
        default=4,
 | 
						|
        help="The number of data loading workers (default: 4)",
 | 
						|
    )
 | 
						|
    # Random Seed
 | 
						|
    parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
 | 
						|
    args = parser.parse_args()
 | 
						|
    if args.rand_seed is None or args.rand_seed < 0:
 | 
						|
        args.rand_seed = random.randint(1, 100000)
 | 
						|
    assert args.save_dir is not None, "The save dir argument can not be None"
 | 
						|
    args.save_dir = "{:}-s{:}-mlr{:}-d{:}-e{:}-env{:}".format(
 | 
						|
        args.save_dir,
 | 
						|
        args.inner_step,
 | 
						|
        args.meta_lr,
 | 
						|
        args.hidden_dim,
 | 
						|
        args.epochs,
 | 
						|
        args.env_version,
 | 
						|
    )
 | 
						|
    main(args)
 |