xautodl/exps/experimental/GeMOSA/baselines/slbm-nof.py
2021-06-03 01:08:17 -07:00

228 lines
7.2 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
# python exps/GeMOSA/baselines/slbm-nof.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda
# python exps/GeMOSA/baselines/slbm-nof.py --env_version v2 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda
# python exps/GeMOSA/baselines/slbm-nof.py --env_version v3 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda
# python exps/GeMOSA/baselines/slbm-nof.py --env_version v4 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve()
print("LIB-DIR: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
)
from xautodl.log_utils import time_string
from xautodl.log_utils import AverageMeter, convert_secs2time
from xautodl.procedures.metric_utils import (
SaveMetric,
MSEMetric,
Top1AccMetric,
ComposeMetric,
)
from xautodl.datasets.synthetic_core import get_synthetic_env
from xautodl.models.xcore import get_model
from xautodl.utils import show_mean_var
def subsample(historical_x, historical_y, maxn=10000):
total = historical_x.size(0)
if total <= maxn:
return historical_x, historical_y
else:
indexes = torch.randint(low=0, high=total, size=[maxn])
return historical_x[indexes], historical_y[indexes]
def main(args):
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
env = get_synthetic_env(mode="test", version=args.env_version)
model_kwargs = dict(
config=dict(model_type="norm_mlp"),
input_dim=env.meta_info["input_dim"],
output_dim=env.meta_info["output_dim"],
hidden_dims=[args.hidden_dim] * 2,
act_cls="relu",
norm_cls="layer_norm_1d",
)
logger.log("The total enviornment: {:}".format(env))
w_containers = dict()
if env.meta_info["task"] == "regression":
criterion = torch.nn.MSELoss()
metric_cls = MSEMetric
elif env.meta_info["task"] == "classification":
criterion = torch.nn.CrossEntropyLoss()
metric_cls = Top1AccMetric
else:
raise ValueError(
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
)
seq_times = env.get_seq_times(0, args.seq_length)
_, (allxs, allys) = env.seq_call(seq_times)
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
if env.meta_info["task"] == "classification":
allys = allys.view(-1)
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
model = get_model(**model_kwargs)
model = model.to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(args.epochs * 0.25),
int(args.epochs * 0.5),
int(args.epochs * 0.75),
],
gamma=0.3,
)
train_metric = metric_cls(True)
best_loss, best_param = None, None
for _iepoch in range(args.epochs):
preds = model(historical_x)
optimizer.zero_grad()
loss = criterion(preds, historical_y)
loss.backward()
optimizer.step()
lr_scheduler.step()
# save best
if best_loss is None or best_loss > loss.item():
best_loss = loss.item()
best_param = copy.deepcopy(model.state_dict())
model.load_state_dict(best_param)
model.analyze_weights()
with torch.no_grad():
train_metric(preds, historical_y)
train_results = train_metric.get_info()
print(train_results)
metric = metric_cls(True)
per_timestamp_time, start_time = AverageMeter(), time.time()
for idx, (future_time, (future_x, future_y)) in enumerate(env):
need_time = "Time Left: {:}".format(
convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True)
)
logger.log(
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, len(env))
+ " "
+ need_time
)
# train the same data
# build optimizer
xmetric = ComposeMetric(metric_cls(True), SaveMetric())
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
future_y_hat = model(future_x)
future_loss = criterion(future_y_hat, future_y)
metric(future_y_hat, future_y)
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, len(env))
+ " train-score: {:.5f}, eval-score: {:.5f}".format(
train_results["score"], metric.get_info()["score"]
)
)
logger.log(log_str)
logger.log("")
per_timestamp_time.update(time.time() - start_time)
start_time = time.time()
save_checkpoint(
{"w_containers": w_containers},
logger.path(None) / "final-ckp.pth",
logger,
)
logger.log("-" * 200 + "\n")
logger.close()
return metric.get_info()["score"]
if __name__ == "__main__":
parser = argparse.ArgumentParser("Use the data in the past.")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/GeMOSA-synthetic/use-same-nof-timestamp",
help="The checkpoint directory.",
)
parser.add_argument(
"--env_version",
type=str,
required=True,
help="The synthetic enviornment version.",
)
parser.add_argument(
"--hidden_dim",
type=int,
required=True,
help="The hidden dimension.",
)
parser.add_argument(
"--seq_length", type=int, default=20, help="The sequence length."
)
parser.add_argument(
"--init_lr",
type=float,
default=0.1,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
"--batch_size",
type=int,
default=512,
help="The batch size",
)
parser.add_argument(
"--epochs",
type=int,
default=300,
help="The total number of epochs.",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="",
)
parser.add_argument(
"--workers",
type=int,
default=4,
help="The number of data loading workers (default: 4)",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
args.save_dir = "{:}-d{:}_e{:}_lr{:}-env{:}".format(
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
)
if args.rand_seed is None or args.rand_seed < 0:
results = []
for iseed in range(3):
args.rand_seed = random.randint(1, 100000)
result = main(args)
results.append(result)
show_mean_var(results)
else:
main(args)