xautodl/exps/LFNA/lfna_utils.py
2021-05-12 10:58:54 +00:00

92 lines
2.6 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
import copy
import torch
from tqdm import tqdm
from procedures import prepare_seed, prepare_logger
from datasets.synthetic_core import get_synthetic_env
def lfna_setup(args):
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
cache_path = (
logger.path(None) / ".." / "env-{:}-info.pth".format(args.env_version)
).resolve()
if cache_path.exists():
env_info = torch.load(cache_path)
else:
env_info = dict()
dynamic_env = get_synthetic_env(version=args.env_version)
env_info["total"] = len(dynamic_env)
for idx, (timestamp, (_allx, _ally)) in enumerate(tqdm(dynamic_env)):
env_info["{:}-timestamp".format(idx)] = timestamp
env_info["{:}-x".format(idx)] = _allx
env_info["{:}-y".format(idx)] = _ally
env_info["dynamic_env"] = dynamic_env
torch.save(env_info, cache_path)
"""
model_kwargs = dict(
config=dict(model_type="simple_mlp"),
input_dim=1,
output_dim=1,
hidden_dim=args.hidden_dim,
act_cls="leaky_relu",
norm_cls="identity",
)
"""
model_kwargs = dict(
config=dict(model_type="norm_mlp"),
input_dim=1,
output_dim=1,
hidden_dims=[args.hidden_dim] * 2,
act_cls="gelu",
norm_cls="layer_norm_1d",
)
return logger, env_info, model_kwargs
def train_model(model, dataset, lr, epochs):
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr, amsgrad=True)
best_loss, best_param = None, None
for _iepoch in range(epochs):
preds = model(dataset.x)
optimizer.zero_grad()
loss = criterion(preds, dataset.y)
loss.backward()
optimizer.step()
# save best
if best_loss is None or best_loss > loss.item():
best_loss = loss.item()
best_param = copy.deepcopy(model.state_dict())
model.load_state_dict(best_param)
return best_loss
class TimeData:
def __init__(self, timestamp, xs, ys):
self._timestamp = timestamp
self._xs = xs
self._ys = ys
@property
def x(self):
return self._xs
@property
def y(self):
return self._ys
@property
def timestamp(self):
return self._timestamp
def __repr__(self):
return "{name}(timestamp={timestamp}, with {num} samples)".format(
name=self.__class__.__name__, timestamp=self._timestamp, num=len(self._xs)
)