xautodl/exps/show-dataset.py
2021-03-17 09:25:58 +00:00

54 lines
2.5 KiB
Python

##############################################################################
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
##############################################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 #
##############################################################################
# python ./exps/NATS-Bench/main-tss.py --mode meta #
##############################################################################
import os, sys, time, torch, random, argparse
from typing import List, Text, Dict, Any
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import dict2config, load_config
from datasets import get_datasets
from nats_bench import create
def show_imagenet_16_120(dataset_dir=None):
if dataset_dir is None:
torch_home_dir = (
os.environ["TORCH_HOME"] if "TORCH_HOME" in os.environ else os.path.join(os.environ["HOME"], ".torch")
)
dataset_dir = os.path.join(torch_home_dir, "cifar.python", "ImageNet16")
train_data, valid_data, xshape, class_num = get_datasets("ImageNet16-120", dataset_dir, -1)
split_info = load_config("configs/nas-benchmark/ImageNet16-120-split.txt", None, None)
print("=" * 10 + " ImageNet-16-120 " + "=" * 10)
print("Training Data: {:}".format(train_data))
print("Evaluation Data: {:}".format(valid_data))
print("Hold-out training: {:} images.".format(len(split_info.train)))
print("Hold-out valid : {:} images.".format(len(split_info.valid)))
if __name__ == "__main__":
# show_imagenet_16_120()
api_nats_tss = create(None, "tss", fast_mode=True, verbose=True)
valid_acc_12e = []
test_acc_12e = []
test_acc_200e = []
for index in range(10000):
info = api_nats_tss.get_more_info(index, "ImageNet16-120", hp="12")
valid_acc_12e.append(info["valid-accuracy"]) # the validation accuracy after training the model by 12 epochs
test_acc_12e.append(info["test-accuracy"]) # the test accuracy after training the model by 12 epochs
info = api_nats_tss.get_more_info(index, "ImageNet16-120", hp="200")
test_acc_200e.append(
info["test-accuracy"]
) # the test accuracy after training the model by 200 epochs (which I reported in the paper)