xautodl/exps/GeMOSA/main.py
2021-05-26 02:41:36 +00:00

344 lines
12 KiB
Python

#####################################################
# Learning to Generate Model One Step Ahead #
#####################################################
# python exps/GeMOSA/lfna.py --env_version v1 --workers 0
# python exps/GeMOSA/lfna.py --env_version v1 --device cuda --lr 0.001
# python exps/GeMOSA/main.py --env_version v1 --device cuda --lr 0.002 --seq_length 16 --meta_batch 128
# python exps/GeMOSA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
from torch.nn import functional as F
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
print("LIB-DIR: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
)
from xautodl.log_utils import time_string
from xautodl.log_utils import AverageMeter, convert_secs2time
from xautodl.utils import split_str2indexes
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from xautodl.datasets.synthetic_core import get_synthetic_env
from xautodl.models.xcore import get_model
from xautodl.xlayers import super_core, trunc_normal_
from lfna_utils import lfna_setup, train_model, TimeData
from lfna_meta_model import MetaModelV1
def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=False):
logger.log("Online evaluate: {:}".format(env))
loss_meter = AverageMeter()
w_containers = dict()
for idx, (future_time, (future_x, future_y)) in enumerate(env):
with torch.no_grad():
meta_model.eval()
base_model.eval()
_, [future_container], time_embeds = meta_model(
future_time.to(args.device).view(1, 1), None, False
)
if save:
w_containers[idx] = future_container.no_grad_clone()
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
future_y_hat = base_model.forward_with_container(future_x, future_container)
future_loss = criterion(future_y_hat, future_y)
loss_meter.update(future_loss.item())
refine, post_refine_loss = meta_model.adapt(
base_model,
criterion,
future_time.item(),
future_x,
future_y,
args.refine_lr,
args.refine_epochs,
{"param": time_embeds, "loss": future_loss.item()},
)
logger.log(
"[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format(
idx, len(env), future_loss.item()
)
+ ", post-loss={:.4f}".format(post_refine_loss if refine else -1)
)
meta_model.clear_fixed()
meta_model.clear_learnt()
return w_containers, loss_meter
def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger):
base_model.train()
meta_model.train()
optimizer = torch.optim.Adam(
meta_model.get_parameters(True, True, True),
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=True,
)
logger.log("Pre-train the meta-model")
logger.log("Using the optimizer: {:}".format(optimizer))
meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2")
final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed)
if meta_model.has_best(final_best_name):
meta_model.load_best(final_best_name)
logger.log("Directly load the best model from {:}".format(final_best_name))
return
total_indexes = list(range(meta_model.meta_length))
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh
per_epoch_time, start_time = AverageMeter(), time.time()
device = args.device
for iepoch in range(args.epochs):
left_time = "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
optimizer.zero_grad()
generated_time_embeds = meta_model(meta_model.meta_timestamps, None, True)
batch_indexes = random.choices(total_indexes, k=args.meta_batch)
raw_time_steps = meta_model.meta_timestamps[batch_indexes]
regularization_loss = F.l1_loss(
generated_time_embeds, meta_model.super_meta_embed, reduction="mean"
)
# future loss
total_future_losses, total_present_losses = [], []
_, future_containers, _ = meta_model(
None, generated_time_embeds[batch_indexes], False
)
_, present_containers, _ = meta_model(
None, meta_model.super_meta_embed[batch_indexes], False
)
for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()):
_, (inputs, targets) = xenv(time_step)
inputs, targets = inputs.to(device), targets.to(device)
predictions = base_model.forward_with_container(
inputs, future_containers[ibatch]
)
total_future_losses.append(criterion(predictions, targets))
predictions = base_model.forward_with_container(
inputs, present_containers[ibatch]
)
total_present_losses.append(criterion(predictions, targets))
with torch.no_grad():
meta_std = torch.stack(total_future_losses).std().item()
loss_future = torch.stack(total_future_losses).mean()
loss_present = torch.stack(total_present_losses).mean()
total_loss = loss_future + loss_present + regularization_loss
total_loss.backward()
optimizer.step()
# success
success, best_score = meta_model.save_best(-total_loss.item())
logger.log(
"{:} [META {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format(
time_string(),
iepoch,
args.epochs,
total_loss.item(),
meta_std,
loss_future.item(),
loss_present.item(),
regularization_loss.item(),
)
+ ", batch={:}".format(len(total_future_losses))
+ ", success={:}, best={:.4f}".format(success, -best_score)
+ ", LS={:}/{:}".format(iepoch - last_success_epoch, early_stop_thresh)
+ ", {:}".format(left_time)
)
if success:
last_success_epoch = iepoch
if iepoch - last_success_epoch >= early_stop_thresh:
logger.log("Early stop the pre-training at {:}".format(iepoch))
break
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
meta_model.load_best()
# save to the final model
meta_model.set_best_name(final_best_name)
success, _ = meta_model.save_best(best_score + 1e-6)
assert success
logger.log("Save the best model into {:}".format(final_best_name))
def main(args):
logger, model_kwargs = lfna_setup(args)
train_env = get_synthetic_env(mode="train", version=args.env_version)
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
all_env = get_synthetic_env(mode=None, version=args.env_version)
logger.log("The training enviornment: {:}".format(train_env))
logger.log("The validation enviornment: {:}".format(valid_env))
logger.log("The trainval enviornment: {:}".format(trainval_env))
logger.log("The total enviornment: {:}".format(all_env))
base_model = get_model(**model_kwargs)
base_model = base_model.to(args.device)
criterion = torch.nn.MSELoss()
shape_container = base_model.get_w_container().to_shape_container()
# pre-train the hypernetwork
timestamps = trainval_env.get_timestamp(None)
meta_model = MetaModelV1(
shape_container,
args.layer_dim,
args.time_dim,
timestamps,
seq_length=args.seq_length,
interval=trainval_env.time_interval,
)
meta_model = meta_model.to(args.device)
logger.log("The base-model has {:} weights.".format(base_model.numel()))
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
logger.log("The base-model is\n{:}".format(base_model))
logger.log("The meta-model is\n{:}".format(meta_model))
meta_train_procedure(base_model, meta_model, criterion, trainval_env, args, logger)
# try to evaluate once
# online_evaluate(train_env, meta_model, base_model, criterion, args, logger)
# online_evaluate(valid_env, meta_model, base_model, criterion, args, logger)
w_containers, loss_meter = online_evaluate(
all_env, meta_model, base_model, criterion, args, logger, True
)
logger.log("In this enviornment, the loss-meter is {:}".format(loss_meter))
save_checkpoint(
{"w_containers": w_containers},
logger.path(None) / "final-ckp.pth",
logger,
)
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(".")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/lfna-synthetic/lfna-battle",
help="The checkpoint directory.",
)
parser.add_argument(
"--env_version",
type=str,
required=True,
help="The synthetic enviornment version.",
)
parser.add_argument(
"--hidden_dim",
type=int,
default=16,
help="The hidden dimension.",
)
parser.add_argument(
"--layer_dim",
type=int,
default=16,
help="The layer chunk dimension.",
)
parser.add_argument(
"--time_dim",
type=int,
default=16,
help="The timestamp dimension.",
)
#####
parser.add_argument(
"--lr",
type=float,
default=0.002,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.00001,
help="The weight decay for the optimizer (default is Adam)",
)
parser.add_argument(
"--meta_batch",
type=int,
default=64,
help="The batch size for the meta-model",
)
parser.add_argument(
"--sampler_enlarge",
type=int,
default=5,
help="Enlarge the #iterations for an epoch",
)
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
parser.add_argument(
"--refine_lr",
type=float,
default=0.001,
help="The learning rate for the optimizer, during refine",
)
parser.add_argument(
"--refine_epochs", type=int, default=150, help="The final refine #epochs."
)
parser.add_argument(
"--early_stop_thresh",
type=int,
default=20,
help="The #epochs for early stop.",
)
parser.add_argument(
"--pretrain_early_stop_thresh",
type=int,
default=300,
help="The #epochs for early stop.",
)
parser.add_argument(
"--seq_length", type=int, default=10, help="The sequence length."
)
parser.add_argument(
"--workers", type=int, default=4, help="The number of workers in parallel."
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
args.save_dir = "{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format(
args.save_dir,
args.meta_batch,
args.hidden_dim,
args.layer_dim,
args.time_dim,
args.seq_length,
args.lr,
args.weight_decay,
args.epochs,
args.env_version,
)
main(args)