179 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			179 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
 | |
| ######################################################################################
 | |
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
 | |
| ######################################################################################
 | |
| import torch, random
 | |
| import torch.nn as nn
 | |
| from copy import deepcopy
 | |
| from ..cell_operations import ResNetBasicblock
 | |
| from .search_cells import NAS201SearchCell as SearchCell
 | |
| from .genotypes import Structure
 | |
| 
 | |
| 
 | |
| class TinyNetworkSETN(nn.Module):
 | |
|     def __init__(
 | |
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
 | |
|     ):
 | |
|         super(TinyNetworkSETN, self).__init__()
 | |
|         self._C = C
 | |
|         self._layerN = N
 | |
|         self.max_nodes = max_nodes
 | |
|         self.stem = nn.Sequential(
 | |
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
 | |
|         )
 | |
| 
 | |
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
 | |
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
 | |
| 
 | |
|         C_prev, num_edge, edge2index = C, None, None
 | |
|         self.cells = nn.ModuleList()
 | |
|         for index, (C_curr, reduction) in enumerate(
 | |
|             zip(layer_channels, layer_reductions)
 | |
|         ):
 | |
|             if reduction:
 | |
|                 cell = ResNetBasicblock(C_prev, C_curr, 2)
 | |
|             else:
 | |
|                 cell = SearchCell(
 | |
|                     C_prev,
 | |
|                     C_curr,
 | |
|                     1,
 | |
|                     max_nodes,
 | |
|                     search_space,
 | |
|                     affine,
 | |
|                     track_running_stats,
 | |
|                 )
 | |
|                 if num_edge is None:
 | |
|                     num_edge, edge2index = cell.num_edges, cell.edge2index
 | |
|                 else:
 | |
|                     assert (
 | |
|                         num_edge == cell.num_edges and edge2index == cell.edge2index
 | |
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
 | |
|             self.cells.append(cell)
 | |
|             C_prev = cell.out_dim
 | |
|         self.op_names = deepcopy(search_space)
 | |
|         self._Layer = len(self.cells)
 | |
|         self.edge2index = edge2index
 | |
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
 | |
|         self.global_pooling = nn.AdaptiveAvgPool2d(1)
 | |
|         self.classifier = nn.Linear(C_prev, num_classes)
 | |
|         self.arch_parameters = nn.Parameter(
 | |
|             1e-3 * torch.randn(num_edge, len(search_space))
 | |
|         )
 | |
|         self.mode = "urs"
 | |
|         self.dynamic_cell = None
 | |
| 
 | |
|     def set_cal_mode(self, mode, dynamic_cell=None):
 | |
|         assert mode in ["urs", "joint", "select", "dynamic"]
 | |
|         self.mode = mode
 | |
|         if mode == "dynamic":
 | |
|             self.dynamic_cell = deepcopy(dynamic_cell)
 | |
|         else:
 | |
|             self.dynamic_cell = None
 | |
| 
 | |
|     def get_cal_mode(self):
 | |
|         return self.mode
 | |
| 
 | |
|     def get_weights(self):
 | |
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters())
 | |
|         xlist += list(self.lastact.parameters()) + list(
 | |
|             self.global_pooling.parameters()
 | |
|         )
 | |
|         xlist += list(self.classifier.parameters())
 | |
|         return xlist
 | |
| 
 | |
|     def get_alphas(self):
 | |
|         return [self.arch_parameters]
 | |
| 
 | |
|     def get_message(self):
 | |
|         string = self.extra_repr()
 | |
|         for i, cell in enumerate(self.cells):
 | |
|             string += "\n {:02d}/{:02d} :: {:}".format(
 | |
|                 i, len(self.cells), cell.extra_repr()
 | |
|             )
 | |
|         return string
 | |
| 
 | |
|     def extra_repr(self):
 | |
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
 | |
|             name=self.__class__.__name__, **self.__dict__
 | |
|         )
 | |
| 
 | |
|     def genotype(self):
 | |
|         genotypes = []
 | |
|         for i in range(1, self.max_nodes):
 | |
|             xlist = []
 | |
|             for j in range(i):
 | |
|                 node_str = "{:}<-{:}".format(i, j)
 | |
|                 with torch.no_grad():
 | |
|                     weights = self.arch_parameters[self.edge2index[node_str]]
 | |
|                     op_name = self.op_names[weights.argmax().item()]
 | |
|                 xlist.append((op_name, j))
 | |
|             genotypes.append(tuple(xlist))
 | |
|         return Structure(genotypes)
 | |
| 
 | |
|     def dync_genotype(self, use_random=False):
 | |
|         genotypes = []
 | |
|         with torch.no_grad():
 | |
|             alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
 | |
|         for i in range(1, self.max_nodes):
 | |
|             xlist = []
 | |
|             for j in range(i):
 | |
|                 node_str = "{:}<-{:}".format(i, j)
 | |
|                 if use_random:
 | |
|                     op_name = random.choice(self.op_names)
 | |
|                 else:
 | |
|                     weights = alphas_cpu[self.edge2index[node_str]]
 | |
|                     op_index = torch.multinomial(weights, 1).item()
 | |
|                     op_name = self.op_names[op_index]
 | |
|                 xlist.append((op_name, j))
 | |
|             genotypes.append(tuple(xlist))
 | |
|         return Structure(genotypes)
 | |
| 
 | |
|     def get_log_prob(self, arch):
 | |
|         with torch.no_grad():
 | |
|             logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
 | |
|         select_logits = []
 | |
|         for i, node_info in enumerate(arch.nodes):
 | |
|             for op, xin in node_info:
 | |
|                 node_str = "{:}<-{:}".format(i + 1, xin)
 | |
|                 op_index = self.op_names.index(op)
 | |
|                 select_logits.append(logits[self.edge2index[node_str], op_index])
 | |
|         return sum(select_logits).item()
 | |
| 
 | |
|     def return_topK(self, K):
 | |
|         archs = Structure.gen_all(self.op_names, self.max_nodes, False)
 | |
|         pairs = [(self.get_log_prob(arch), arch) for arch in archs]
 | |
|         if K < 0 or K >= len(archs):
 | |
|             K = len(archs)
 | |
|         sorted_pairs = sorted(pairs, key=lambda x: -x[0])
 | |
|         return_pairs = [sorted_pairs[_][1] for _ in range(K)]
 | |
|         return return_pairs
 | |
| 
 | |
|     def forward(self, inputs):
 | |
|         alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
 | |
|         with torch.no_grad():
 | |
|             alphas_cpu = alphas.detach().cpu()
 | |
| 
 | |
|         feature = self.stem(inputs)
 | |
|         for i, cell in enumerate(self.cells):
 | |
|             if isinstance(cell, SearchCell):
 | |
|                 if self.mode == "urs":
 | |
|                     feature = cell.forward_urs(feature)
 | |
|                 elif self.mode == "select":
 | |
|                     feature = cell.forward_select(feature, alphas_cpu)
 | |
|                 elif self.mode == "joint":
 | |
|                     feature = cell.forward_joint(feature, alphas)
 | |
|                 elif self.mode == "dynamic":
 | |
|                     feature = cell.forward_dynamic(feature, self.dynamic_cell)
 | |
|                 else:
 | |
|                     raise ValueError("invalid mode={:}".format(self.mode))
 | |
|             else:
 | |
|                 feature = cell(feature)
 | |
| 
 | |
|         out = self.lastact(feature)
 | |
|         out = self.global_pooling(out)
 | |
|         out = out.view(out.size(0), -1)
 | |
|         logits = self.classifier(out)
 | |
| 
 | |
|         return out, logits
 |