115 lines
5.2 KiB
Python
115 lines
5.2 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
|
###############################################################################################
|
|
# Before run these commands, the files must be properly put.
|
|
# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699
|
|
# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1
|
|
# bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1
|
|
###############################################################################################
|
|
import os, gc, sys, math, argparse, psutil
|
|
import numpy as np
|
|
import torch
|
|
from pathlib import Path
|
|
from collections import OrderedDict
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
from nas_201_api import NASBench201API as API
|
|
from log_utils import time_string
|
|
from models import get_cell_based_tiny_net
|
|
from utils import weight_watcher
|
|
|
|
|
|
def get_cor(A, B):
|
|
return float(np.corrcoef(A, B)[0,1])
|
|
|
|
|
|
def tostr(accdict, norms):
|
|
xstr = []
|
|
for key, accs in accdict.items():
|
|
cor = get_cor(accs, norms)
|
|
xstr.append('{:}: {:.3f}'.format(key, cor))
|
|
return ' '.join(xstr)
|
|
|
|
|
|
def evaluate(api, weight_dir, data: str, use_12epochs_result: bool):
|
|
print('\nEvaluate dataset={:}'.format(data))
|
|
norms, process = [], psutil.Process(os.getpid())
|
|
final_val_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []})
|
|
final_test_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []})
|
|
for idx in range(len(api)):
|
|
# info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False)
|
|
# import pdb; pdb.set_trace()
|
|
for key in ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']:
|
|
info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False)
|
|
if key == 'cifar10-valid':
|
|
final_val_accs['cifar10'].append(info['valid-accuracy'])
|
|
elif key == 'cifar10':
|
|
final_test_accs['cifar10'].append(info['test-accuracy'])
|
|
else:
|
|
final_test_accs[key].append(info['test-accuracy'])
|
|
final_val_accs[key].append(info['valid-accuracy'])
|
|
config = api.get_net_config(idx, data)
|
|
net = get_cell_based_tiny_net(config)
|
|
api.reload(weight_dir, idx)
|
|
params = api.get_net_param(idx, data, None, use_12epochs_result=use_12epochs_result)
|
|
cur_norms = []
|
|
for seed, param in params.items():
|
|
with torch.no_grad():
|
|
net.load_state_dict(param)
|
|
_, summary = weight_watcher.analyze(net, alphas=False)
|
|
cur_norms.append(-summary['lognorm'])
|
|
cur_norm = float(np.mean(cur_norms))
|
|
if math.isnan(cur_norm):
|
|
print (' IGNORE {:} due to nan.'.format(idx))
|
|
continue
|
|
norms.append(cur_norm)
|
|
api.clear_params(idx, None)
|
|
if idx % 200 == 199 or idx + 1 == len(api):
|
|
head = '{:05d}/{:05d}'.format(idx, len(api))
|
|
stem_val = tostr(final_val_accs, norms)
|
|
stem_test = tostr(final_test_accs, norms)
|
|
print('{:} {:} {:} with {:} epochs ({:.2f} MB memory)'.format(time_string(), head, data, 12 if use_12epochs_result else 200, process.memory_info().rss / 1e6))
|
|
print(' [Valid] -->> {:}'.format(stem_val))
|
|
print(' [Test.] -->> {:}'.format(stem_test))
|
|
gc.collect()
|
|
|
|
|
|
def main(meta_file: str, weight_dir, save_dir, xdata, use_12epochs_result):
|
|
api = API(meta_file)
|
|
datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
|
|
print(time_string() + ' ' + '='*50)
|
|
for data in datasets:
|
|
nums = api.statistics(data, True)
|
|
total = sum([k*v for k, v in nums.items()])
|
|
print('Using 012 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums))
|
|
print(time_string() + ' ' + '='*50)
|
|
for data in datasets:
|
|
nums = api.statistics(data, False)
|
|
total = sum([k*v for k, v in nums.items()])
|
|
print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums))
|
|
print(time_string() + ' ' + '='*50)
|
|
|
|
#evaluate(api, weight_dir, 'cifar10-valid', False, True)
|
|
evaluate(api, weight_dir, xdata, use_12epochs_result)
|
|
|
|
print('{:} finish this test.'.format(time_string()))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
|
|
parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.')
|
|
parser.add_argument('--base_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.')
|
|
parser.add_argument('--dataset' , type=str, default=None, help='.')
|
|
parser.add_argument('--use_12' , type=int, default=None, help='.')
|
|
args = parser.parse_args()
|
|
|
|
save_dir = Path(args.save_dir)
|
|
save_dir.mkdir(parents=True, exist_ok=True)
|
|
meta_file = Path(args.base_path + '.pth')
|
|
weight_dir = Path(args.base_path + '-archive')
|
|
assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)
|
|
assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir)
|
|
|
|
main(str(meta_file), weight_dir, save_dir, args.dataset, bool(args.use_12))
|
|
|