xautodl/exps/synthetic/baseline.py

142 lines
4.8 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
############################################################################
# CUDA_VISIBLE_DEVICES=0 python exps/synthetic/baseline.py #
############################################################################
import os, sys, copy, random
import torch
import numpy as np
import argparse
from collections import OrderedDict
from pathlib import Path
from tqdm import tqdm
from pprint import pprint
import matplotlib
from matplotlib import cm
matplotlib.use("agg")
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from datasets import ConstantGenerator, SinGenerator, SyntheticDEnv
from datasets import DynamicQuadraticFunc
from datasets.synthetic_example import create_example_v1
from utils.temp_sync import optimize_fn, evaluate_fn
def draw_fig(save_dir, timestamp, scatter_list):
save_path = save_dir / "{:04d}".format(timestamp)
# print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path))
dpi, width, height = 40, 1500, 1500
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize, font_gap = 80, 80, 5
fig = plt.figure(figsize=figsize)
cur_ax = fig.add_subplot(1, 1, 1)
for scatter_dict in scatter_list:
cur_ax.scatter(
scatter_dict["xaxis"],
scatter_dict["yaxis"],
color=scatter_dict["color"],
s=scatter_dict["s"],
alpha=scatter_dict["alpha"],
label=scatter_dict["label"],
)
cur_ax.set_xlabel("X", fontsize=LabelSize)
cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize)
cur_ax.set_xlim(-6, 6)
cur_ax.set_ylim(-40, 40)
for tick in cur_ax.xaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
tick.label.set_rotation(10)
for tick in cur_ax.yaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
plt.legend(loc=1, fontsize=LegendFontsize)
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
plt.close("all")
def main(save_dir):
save_dir = Path(str(save_dir))
save_dir.mkdir(parents=True, exist_ok=True)
dynamic_env, function = create_example_v1(100, num_per_task=1000)
additional_xaxis = np.arange(-6, 6, 0.2)
models = dict()
for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)):
xaxis_all = dataset[:, 0].numpy()
# xaxis_all = np.concatenate((additional_xaxis, xaxis_all))
# compute the ground truth
function.set_timestamp(timestamp)
yaxis_all = function.noise_call(xaxis_all)
# split the dataset
indexes = list(range(xaxis_all.shape[0]))
random.shuffle(indexes)
train_indexes = indexes[:len(indexes)//2]
valid_indexes = indexes[len(indexes)//2:]
train_xs, train_ys = xaxis_all[train_indexes], yaxis_all[train_indexes]
valid_xs, valid_ys = xaxis_all[valid_indexes], yaxis_all[valid_indexes]
model, loss_fn, train_loss = optimize_fn(train_xs, train_ys)
# model, loss_fn, train_loss = optimize_fn(xaxis_all, yaxis_all)
pred_valid_ys, valid_loss = evaluate_fn(model, valid_xs, valid_ys, loss_fn)
print("[{:03d}] T-{:03d}, train-loss={:.5f}, valid-loss={:.5f}".format(idx, timestamp, train_loss, valid_loss))
# the first plot
scatter_list = []
scatter_list.append(
{
"xaxis": valid_xs,
"yaxis": valid_ys,
"color": "k",
"s": 10,
"alpha": 0.99,
"label": "Timestamp={:02d}".format(timestamp),
}
)
scatter_list.append(
{
"xaxis": valid_xs,
"yaxis": pred_valid_ys,
"color": "r",
"s": 10,
"alpha": 0.5,
"label": "MLP at now"
}
)
draw_fig(save_dir, timestamp, scatter_list)
print("Save all figures into {:}".format(save_dir))
save_dir = save_dir.resolve()
cmd = "ffmpeg -y -i {xdir}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1000:1000 -vb 5000k {xdir}/vis.mp4".format(
xdir=save_dir
)
os.system(cmd)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Baseline")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/vis-synthetic",
help="The save directory.",
)
args = parser.parse_args()
main(args.save_dir)