264 lines
16 KiB
Python
264 lines
16 KiB
Python
##############################################################################
|
|
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
|
##############################################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
|
##############################################################################
|
|
# This file is used to re-orangize all checkpoints (created by main-tss.py) #
|
|
# into a single benchmark file. Besides, for each trial, we will merge the #
|
|
# information of all its trials into a single file. #
|
|
# #
|
|
# Usage: #
|
|
# python exps/NATS-Bench/tss-collect.py #
|
|
##############################################################################
|
|
import os, re, sys, time, shutil, random, argparse, collections
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
import torch
|
|
from tqdm import tqdm
|
|
from pathlib import Path
|
|
from collections import defaultdict, OrderedDict
|
|
from typing import Dict, Any, Text, List
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
|
from config_utils import load_config, dict2config
|
|
from datasets import get_datasets
|
|
from models import CellStructure, get_cell_based_tiny_net, get_search_spaces
|
|
from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
|
|
from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
|
|
from utils import get_md5_file
|
|
from nas_201_api import NASBench201API
|
|
|
|
|
|
api = NASBench201API('{:}/.torch/NAS-Bench-201-v1_0-e61699.pth'.format(os.environ['HOME']))
|
|
|
|
NATS_TSS_BASE_NAME = 'NATS-tss-v1_0' # 2020.08.28
|
|
|
|
|
|
def create_result_count(used_seed: int, dataset: Text, arch_config: Dict[Text, Any],
|
|
results: Dict[Text, Any], dataloader_dict: Dict[Text, Any]) -> ResultsCount:
|
|
xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'],
|
|
results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None)
|
|
net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes': arch_config['class_num']}, None)
|
|
if 'train_times' in results: # new version
|
|
xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times'])
|
|
xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times'])
|
|
else:
|
|
network = get_cell_based_tiny_net(net_config)
|
|
network.load_state_dict(xresult.get_net_param())
|
|
if dataset == 'cifar10-valid':
|
|
xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses'])
|
|
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda())
|
|
xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
|
|
xresult.update_latency(latencies)
|
|
elif dataset == 'cifar10':
|
|
xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses'])
|
|
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda())
|
|
xresult.update_latency(latencies)
|
|
elif dataset == 'cifar100' or dataset == 'ImageNet16-120':
|
|
xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses'])
|
|
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda())
|
|
xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
|
|
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda())
|
|
xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
|
|
xresult.update_latency(latencies)
|
|
else:
|
|
raise ValueError('invalid dataset name : {:}'.format(dataset))
|
|
return xresult
|
|
|
|
|
|
def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict):
|
|
information = ArchResults(arch_index, arch_str)
|
|
|
|
for checkpoint_path in checkpoints:
|
|
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
|
used_seed = checkpoint_path.name.split('-')[-1].split('.')[0]
|
|
ok_dataset = 0
|
|
for dataset in datasets:
|
|
if dataset not in checkpoint:
|
|
print('Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path))
|
|
continue
|
|
else:
|
|
ok_dataset += 1
|
|
results = checkpoint[dataset]
|
|
assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path)
|
|
arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']}
|
|
|
|
xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict)
|
|
information.update(dataset, int(used_seed), xresult)
|
|
if ok_dataset == 0: raise ValueError('{:} does not find any data'.format(checkpoint_path))
|
|
return information
|
|
|
|
|
|
def correct_time_related_info(arch_index: int, arch_infos: Dict[Text, ArchResults]):
|
|
# calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth
|
|
cifar010_latency = (api.get_latency(arch_index, 'cifar10-valid', hp='200') + api.get_latency(arch_index, 'cifar10', hp='200')) / 2
|
|
cifar100_latency = api.get_latency(arch_index, 'cifar100', hp='200')
|
|
image_latency = api.get_latency(arch_index, 'ImageNet16-120', hp='200')
|
|
for hp, arch_info in arch_infos.items():
|
|
arch_info.reset_latency('cifar10-valid', None, cifar010_latency)
|
|
arch_info.reset_latency('cifar10', None, cifar010_latency)
|
|
arch_info.reset_latency('cifar100', None, cifar100_latency)
|
|
arch_info.reset_latency('ImageNet16-120', None, image_latency)
|
|
|
|
train_per_epoch_time = list(arch_infos['12'].query('cifar10-valid', 777).train_times.values())
|
|
train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
|
|
eval_ori_test_time, eval_x_valid_time = [], []
|
|
for key, value in arch_infos['12'].query('cifar10-valid', 777).eval_times.items():
|
|
if key.startswith('ori-test@'):
|
|
eval_ori_test_time.append(value)
|
|
elif key.startswith('x-valid@'):
|
|
eval_x_valid_time.append(value)
|
|
else: raise ValueError('-- {:} --'.format(key))
|
|
eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(np.mean(eval_x_valid_time))
|
|
nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000, 'ImageNet16-120-test': 6000,
|
|
'cifar10-valid-train': 25000, 'cifar10-valid-valid': 25000,
|
|
'cifar10-train': 50000, 'cifar10-test': 10000,
|
|
'cifar100-train': 50000, 'cifar100-test': 10000, 'cifar100-valid': 5000}
|
|
eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (nums['cifar10-valid-valid'] + nums['cifar10-test'])
|
|
for hp, arch_info in arch_infos.items():
|
|
arch_info.reset_pseudo_train_times('cifar10-valid', None,
|
|
train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar10-valid-train'])
|
|
arch_info.reset_pseudo_train_times('cifar10', None,
|
|
train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar10-train'])
|
|
arch_info.reset_pseudo_train_times('cifar100', None,
|
|
train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar100-train'])
|
|
arch_info.reset_pseudo_train_times('ImageNet16-120', None,
|
|
train_per_epoch_time / nums['cifar10-valid-train'] * nums['ImageNet16-120-train'])
|
|
arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'x-valid', eval_per_sample*nums['cifar10-valid-valid'])
|
|
arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'ori-test', eval_per_sample * nums['cifar10-test'])
|
|
arch_info.reset_pseudo_eval_times('cifar10', None, 'ori-test', eval_per_sample * nums['cifar10-test'])
|
|
arch_info.reset_pseudo_eval_times('cifar100', None, 'x-valid', eval_per_sample * nums['cifar100-valid'])
|
|
arch_info.reset_pseudo_eval_times('cifar100', None, 'x-test', eval_per_sample * nums['cifar100-valid'])
|
|
arch_info.reset_pseudo_eval_times('cifar100', None, 'ori-test', eval_per_sample * nums['cifar100-test'])
|
|
arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-valid', eval_per_sample * nums['ImageNet16-120-valid'])
|
|
arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-test', eval_per_sample * nums['ImageNet16-120-valid'])
|
|
arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'ori-test', eval_per_sample * nums['ImageNet16-120-test'])
|
|
return arch_infos
|
|
|
|
|
|
def simplify(save_dir, save_name, nets, total, sup_config):
|
|
dataloader_dict = get_nas_bench_loaders(6)
|
|
hps, seeds = ['12', '200'], set()
|
|
for hp in hps:
|
|
sub_save_dir = save_dir / 'raw-data-{:}'.format(hp)
|
|
ckps = sorted(list(sub_save_dir.glob('arch-*-seed-*.pth')))
|
|
seed2names = defaultdict(list)
|
|
for ckp in ckps:
|
|
parts = re.split('-|\.', ckp.name)
|
|
seed2names[parts[3]].append(ckp.name)
|
|
print('DIR : {:}'.format(sub_save_dir))
|
|
nums = []
|
|
for seed, xlist in seed2names.items():
|
|
seeds.add(seed)
|
|
nums.append(len(xlist))
|
|
print(' [seed={:}] there are {:} checkpoints.'.format(seed, len(xlist)))
|
|
assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total)
|
|
print('{:} start simplify the checkpoint.'.format(time_string()))
|
|
|
|
datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120')
|
|
|
|
# Create the directory to save the processed data
|
|
# full_save_dir contains all benchmark files with trained weights.
|
|
# simplify_save_dir contains all benchmark files without trained weights.
|
|
full_save_dir = save_dir / (save_name + '-FULL')
|
|
simple_save_dir = save_dir / (save_name + '-SIMPLIFY')
|
|
full_save_dir.mkdir(parents=True, exist_ok=True)
|
|
simple_save_dir.mkdir(parents=True, exist_ok=True)
|
|
# all data in memory
|
|
arch2infos, evaluated_indexes = dict(), set()
|
|
end_time, arch_time = time.time(), AverageMeter()
|
|
# save the meta information
|
|
temp_final_infos = {'meta_archs' : nets,
|
|
'total_archs': total,
|
|
'arch2infos' : None,
|
|
'evaluated_indexes': set()}
|
|
pickle_save(temp_final_infos, str(full_save_dir / 'meta.pickle'))
|
|
pickle_save(temp_final_infos, str(simple_save_dir / 'meta.pickle'))
|
|
|
|
for index in tqdm(range(total)):
|
|
arch_str = nets[index]
|
|
hp2info = OrderedDict()
|
|
|
|
full_save_path = full_save_dir / '{:06d}.pickle'.format(index)
|
|
simple_save_path = simple_save_dir / '{:06d}.pickle'.format(index)
|
|
for hp in hps:
|
|
sub_save_dir = save_dir / 'raw-data-{:}'.format(hp)
|
|
ckps = [sub_save_dir / 'arch-{:06d}-seed-{:}.pth'.format(index, seed) for seed in seeds]
|
|
ckps = [x for x in ckps if x.exists()]
|
|
if len(ckps) == 0:
|
|
raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp))
|
|
|
|
arch_info = account_one_arch(index, arch_str, ckps, datasets, dataloader_dict)
|
|
hp2info[hp] = arch_info
|
|
|
|
hp2info = correct_time_related_info(index, hp2info)
|
|
evaluated_indexes.add(index)
|
|
|
|
to_save_data = OrderedDict({'12': hp2info['12'].state_dict(),
|
|
'200': hp2info['200'].state_dict()})
|
|
pickle_save(to_save_data, str(full_save_path))
|
|
|
|
for hp in hps: hp2info[hp].clear_params()
|
|
to_save_data = OrderedDict({'12': hp2info['12'].state_dict(),
|
|
'200': hp2info['200'].state_dict()})
|
|
pickle_save(to_save_data, str(simple_save_path))
|
|
arch2infos[index] = to_save_data
|
|
# measure elapsed time
|
|
arch_time.update(time.time() - end_time)
|
|
end_time = time.time()
|
|
need_time = '{:}'.format(convert_secs2time(arch_time.avg * (total-index-1), True))
|
|
# print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
|
|
print('{:} {:} done.'.format(time_string(), save_name))
|
|
final_infos = {'meta_archs' : nets,
|
|
'total_archs': total,
|
|
'arch2infos' : arch2infos,
|
|
'evaluated_indexes': evaluated_indexes}
|
|
save_file_name = save_dir / '{:}.pickle'.format(save_name)
|
|
pickle_save(final_infos, str(save_file_name))
|
|
# move the benchmark file to a new path
|
|
hd5sum = get_md5_file(str(save_file_name) + '.pbz2')
|
|
hd5_file_name = save_dir / '{:}-{:}.pickle.pbz2'.format(NATS_TSS_BASE_NAME, hd5sum)
|
|
shutil.move(str(save_file_name) + '.pbz2', hd5_file_name)
|
|
print('Save {:} / {:} architecture results into {:} -> {:}.'.format(len(evaluated_indexes), total, save_file_name, hd5_file_name))
|
|
# move the directory to a new path
|
|
hd5_full_save_dir = save_dir / '{:}-{:}-full'.format(NATS_TSS_BASE_NAME, hd5sum)
|
|
hd5_simple_save_dir = save_dir / '{:}-{:}-simple'.format(NATS_TSS_BASE_NAME, hd5sum)
|
|
shutil.move(full_save_dir, hd5_full_save_dir)
|
|
shutil.move(simple_save_dir, hd5_simple_save_dir)
|
|
# save the meta information for simple and full
|
|
# final_infos['arch2infos'] = None
|
|
# final_infos['evaluated_indexes'] = set()
|
|
|
|
|
|
def traverse_net(max_node):
|
|
aa_nas_bench_ss = get_search_spaces('cell', 'nats-bench')
|
|
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
|
|
print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2)))
|
|
|
|
random.seed( 88 ) # please do not change this line for reproducibility
|
|
random.shuffle( archs )
|
|
assert archs[0 ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0])
|
|
assert archs[9 ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9])
|
|
assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123])
|
|
return [x.tostr() for x in archs]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser(description='NATS-Bench (topology search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument('--base_save_dir', type=str, default='./output/NATS-Bench-topology', help='The base-name of folder to save checkpoints and log.')
|
|
parser.add_argument('--max_node' , type=int, default=4, help='The maximum node in a cell.')
|
|
parser.add_argument('--channel' , type=int, default=16, help='The number of channels.')
|
|
parser.add_argument('--num_cells' , type=int, default=5, help='The number of cells in one stage.')
|
|
parser.add_argument('--check_N' , type=int, default=15625, help='For safety.')
|
|
parser.add_argument('--save_name' , type=str, default='process', help='The save directory.')
|
|
args = parser.parse_args()
|
|
|
|
nets = traverse_net(args.max_node)
|
|
if len(nets) != args.check_N:
|
|
raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N))
|
|
|
|
save_dir = Path(args.base_save_dir)
|
|
simplify(save_dir, args.save_name, nets, args.check_N, {'name': 'infer.tiny', 'channel': args.channel, 'num_cells': args.num_cells})
|