xautodl/exps/algos/BOHB.py
2019-12-31 22:02:11 +11:00

231 lines
11 KiB
Python

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
# required to install hpbandster #################
# bash ./scripts-search/algos/BOHB.sh -1 #
##################################################
import os, sys, time, glob, random, argparse
import numpy as np, collections
from copy import deepcopy
from pathlib import Path
import torch
import torch.nn as nn
from torch.distributions import Categorical
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from nas_102_api import NASBench102API as API
from models import CellStructure, get_search_spaces
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
import ConfigSpace
from hpbandster.optimizers.bohb import BOHB
import hpbandster.core.nameserver as hpns
from hpbandster.core.worker import Worker
def get_configuration_space(max_nodes, search_space):
cs = ConfigSpace.ConfigurationSpace()
#edge2index = {}
for i in range(1, max_nodes):
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
return cs
def config2structure_func(max_nodes):
def config2structure(config):
genotypes = []
for i in range(1, max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
op_name = config[node_str]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return CellStructure( genotypes )
return config2structure
class MyWorker(Worker):
def __init__(self, *args, convert_func=None, nas_bench=None, time_budget=None, **kwargs):
super().__init__(*args, **kwargs)
self.convert_func = convert_func
self.nas_bench = nas_bench
self.time_budget = time_budget
self.seen_archs = []
self.sim_cost_time = 0
self.real_cost_time = 0
self.is_end = False
def get_the_best(self):
assert len(self.seen_archs) > 0
best_index, best_acc = -1, None
for arch_index in self.seen_archs:
info = self.nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True)
vacc = info['valid-accuracy']
if best_acc is None or best_acc < vacc:
best_acc = vacc
best_index = arch_index
assert best_index != -1
return best_index
def compute(self, config, budget, **kwargs):
start_time = time.time()
structure = self.convert_func( config )
arch_index = self.nas_bench.query_index_by_arch( structure )
info = self.nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True)
cur_time = info['train-all-time'] + info['valid-per-time']
cur_vacc = info['valid-accuracy']
self.real_cost_time += (time.time() - start_time)
if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end:
self.sim_cost_time += cur_time
self.seen_archs.append( arch_index )
return ({'loss': 100 - float(cur_vacc),
'info': {'seen-arch' : len(self.seen_archs),
'sim-test-time' : self.sim_cost_time,
'current-arch' : arch_index}
})
else:
self.is_end = True
return ({'loss': 100,
'info': {'seen-arch' : len(self.seen_archs),
'sim-test-time' : self.sim_cost_time,
'current-arch' : None}
})
def main(xargs, nas_bench):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads( xargs.workers )
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
if xargs.data_path is not None:
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
cifar_split = load_config(split_Fpath, None, None)
train_split, valid_split = cifar_split.train, cifar_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
config_path = 'configs/nas-benchmark/algos/R-EA.config'
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
# To split data
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
# data loader
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
else:
config_path = 'configs/nas-benchmark/algos/R-EA.config'
config = load_config(config_path, None, logger)
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}
# nas dataset load
assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset)
search_space = get_search_spaces('cell', xargs.search_space_name)
cs = get_configuration_space(xargs.max_nodes, search_space)
config2structure = config2structure_func(xargs.max_nodes)
hb_run_id = '0'
NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0)
ns_host, ns_port = NS.start()
num_workers = 1
#nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
#logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
workers = []
for i in range(num_workers):
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i)
w.run(background=True)
workers.append(w)
start_time = time.time()
bohb = BOHB(configspace=cs,
run_id=hb_run_id,
eta=3, min_budget=12, max_budget=200,
nameserver=ns_host,
nameserver_port=ns_port,
num_samples=xargs.num_samples,
random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor,
ping_interval=10, min_bandwidth=xargs.min_bandwidth)
results = bohb.run(xargs.n_iters, min_n_workers=num_workers)
bohb.shutdown(shutdown_workers=True)
NS.shutdown()
real_cost_time = time.time() - start_time
id2config = results.get_id2config_mapping()
incumbent = results.get_incumbent_id()
logger.log('Best found configuration: {:}'.format(id2config[incumbent]['config']))
best_arch = config2structure( id2config[incumbent]['config'] )
info = nas_bench.query_by_arch( best_arch )
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
else : logger.log('{:}'.format(info))
logger.log('-'*100)
logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs)))
logger.close()
return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
if __name__ == '__main__':
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
parser.add_argument('--data_path', type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
# channels and number-of-cells
parser.add_argument('--search_space_name', type=str, help='The search space name.')
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
parser.add_argument('--channel', type=int, help='The number of channels.')
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
# BOHB
parser.add_argument('--strategy', default="sampling", type=str, nargs='?', help='optimization strategy for the acquisition function')
parser.add_argument('--min_bandwidth', default=.3, type=float, nargs='?', help='minimum bandwidth for KDE')
parser.add_argument('--num_samples', default=64, type=int, nargs='?', help='number of samples for the acquisition function')
parser.add_argument('--random_fraction', default=.33, type=float, nargs='?', help='fraction of random configurations')
parser.add_argument('--bandwidth_factor', default=3, type=int, nargs='?', help='factor multiplied to the bandwidth')
parser.add_argument('--n_iters', default=100, type=int, nargs='?', help='number of iterations for optimization method')
# log
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
parser.add_argument('--rand_seed', type=int, help='manual seed')
args = parser.parse_args()
#if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
nas_bench = None
else:
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
nas_bench = API(args.arch_nas_dataset)
if args.rand_seed < 0:
save_dir, all_indexes, num = None, [], 500
for i in range(num):
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
args.rand_seed = random.randint(1, 100000)
save_dir, index = main(args, nas_bench)
all_indexes.append( index )
torch.save(all_indexes, save_dir / 'results.pth')
else:
main(args, nas_bench)