100 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ###########################################################################
 | |
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
 | |
| ###########################################################################
 | |
| import tensorflow as tf
 | |
| import numpy as np
 | |
| from copy import deepcopy
 | |
| from ..cell_operations import ResNetBasicblock
 | |
| from .search_cells     import SearchCell
 | |
| 
 | |
| 
 | |
| def sample_gumbel(shape, eps=1e-20):
 | |
|   U = tf.random.uniform(shape, minval=0, maxval=1)
 | |
|   return -tf.math.log(-tf.math.log(U + eps) + eps)
 | |
| 
 | |
| 
 | |
| def gumbel_softmax(logits, temperature):
 | |
|   gumbel_softmax_sample = logits + sample_gumbel(tf.shape(logits))
 | |
|   y = tf.nn.softmax(gumbel_softmax_sample / temperature)
 | |
|   return y
 | |
| 
 | |
| 
 | |
| class TinyNetworkGDAS(tf.keras.Model):
 | |
| 
 | |
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine):
 | |
|     super(TinyNetworkGDAS, self).__init__()
 | |
|     self._C        = C
 | |
|     self._layerN   = N
 | |
|     self.max_nodes = max_nodes
 | |
|     self.stem = tf.keras.Sequential([
 | |
|                     tf.keras.layers.Conv2D(16, 3, 1, padding='same', use_bias=False),
 | |
|                     tf.keras.layers.BatchNormalization()], name='stem')
 | |
|   
 | |
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N    
 | |
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
 | |
| 
 | |
|     C_prev, num_edge, edge2index = C, None, None
 | |
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
 | |
|       cell_prefix = 'cell-{:03d}'.format(index)
 | |
|       #with tf.name_scope(cell_prefix) as scope:
 | |
|       if reduction:
 | |
|         cell = ResNetBasicblock(C_prev, C_curr, 2)
 | |
|       else:
 | |
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine)
 | |
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
 | |
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
 | |
|       C_prev = cell.out_dim
 | |
|       setattr(self, cell_prefix, cell)
 | |
|     self.num_layers = len(layer_reductions)
 | |
|     self.op_names   = deepcopy( search_space )
 | |
|     self.edge2index = edge2index
 | |
|     self.num_edge   = num_edge
 | |
|     self.lastact    = tf.keras.Sequential([
 | |
|                         tf.keras.layers.BatchNormalization(),
 | |
|                         tf.keras.layers.ReLU(),
 | |
|                         tf.keras.layers.GlobalAvgPool2D(),
 | |
|                         tf.keras.layers.Flatten(),
 | |
|                         tf.keras.layers.Dense(num_classes, activation='softmax')], name='lastact')
 | |
|     #self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
 | |
|     arch_init = tf.random_normal_initializer(mean=0, stddev=0.001)
 | |
|     self.arch_parameters = tf.Variable(initial_value=arch_init(shape=(num_edge, len(search_space)), dtype='float32'), trainable=True, name='arch-encoding')
 | |
| 
 | |
|   def get_alphas(self):
 | |
|     xlist = self.trainable_variables
 | |
|     return [x for x in xlist if 'arch-encoding' in x.name]
 | |
| 
 | |
|   def get_weights(self):
 | |
|     xlist = self.trainable_variables
 | |
|     return [x for x in xlist if 'arch-encoding' not in x.name]
 | |
| 
 | |
|   def get_np_alphas(self):
 | |
|     arch_nps = self.arch_parameters.numpy()
 | |
|     arch_ops = np.exp(arch_nps) / np.sum(np.exp(arch_nps), axis=-1, keepdims=True)
 | |
|     return arch_ops
 | |
| 
 | |
|   def genotype(self):
 | |
|     genotypes, arch_nps = [], self.arch_parameters.numpy()
 | |
|     for i in range(1, self.max_nodes):
 | |
|       xlist = []
 | |
|       for j in range(i):
 | |
|         node_str = '{:}<-{:}'.format(i, j)
 | |
|         weights = arch_nps[ self.edge2index[node_str] ]
 | |
|         op_name = self.op_names[ weights.argmax().item() ]
 | |
|         xlist.append((op_name, j))
 | |
|       genotypes.append( tuple(xlist) )
 | |
|     return genotypes
 | |
| 
 | |
|   # 
 | |
|   def call(self, inputs, tau, training):
 | |
|     weightss = tf.cond(tau < 0, lambda: tf.nn.softmax(self.arch_parameters, axis=1),
 | |
|                                 lambda: gumbel_softmax(tf.math.log_softmax(self.arch_parameters, axis=1), tau))
 | |
|     feature = self.stem(inputs, training)
 | |
|     for idx in range(self.num_layers):
 | |
|       cell = getattr(self, 'cell-{:03d}'.format(idx))
 | |
|       if isinstance(cell, SearchCell):
 | |
|         feature = cell.call(feature, weightss, training)
 | |
|       else:
 | |
|         feature = cell(feature, training)
 | |
|     logits = self.lastact(feature, training)
 | |
|     return logits
 |