xautodl/exps/vis/test.py

115 lines
4.9 KiB
Python

# python ./exps/vis/test.py
import os, sys, random
from pathlib import Path
from copy import deepcopy
import torch
import numpy as np
from collections import OrderedDict
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from nas_201_api import NASBench201API as API
def test_nas_api():
from nas_201_api import ArchResults
xdata = torch.load('/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-201-4/simplifies/architectures/000157-FULL.pth')
for key in ['full', 'less']:
print ('\n------------------------- {:} -------------------------'.format(key))
archRes = ArchResults.create_from_state_dict(xdata[key])
print(archRes)
print(archRes.arch_idx_str())
print(archRes.get_dataset_names())
print(archRes.get_comput_costs('cifar10-valid'))
# get the metrics
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False))
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True))
print(archRes.query('cifar10-valid', 777))
OPS = ['skip-connect', 'conv-1x1', 'conv-3x3', 'pool-3x3']
COLORS = ['chartreuse' , 'cyan' , 'navyblue', 'chocolate1']
def plot(filename):
from graphviz import Digraph
g = Digraph(
format='png',
edge_attr=dict(fontsize='20', fontname="times"),
node_attr=dict(style='filled', shape='rect', align='center', fontsize='20', height='0.5', width='0.5', penwidth='2', fontname="times"),
engine='dot')
g.body.extend(['rankdir=LR'])
steps = 5
for i in range(0, steps):
if i == 0:
g.node(str(i), fillcolor='darkseagreen2')
elif i+1 == steps:
g.node(str(i), fillcolor='palegoldenrod')
else: g.node(str(i), fillcolor='lightblue')
for i in range(1, steps):
for xin in range(i):
op_i = random.randint(0, len(OPS)-1)
#g.edge(str(xin), str(i), label=OPS[op_i], fillcolor=COLORS[op_i])
g.edge(str(xin), str(i), label=OPS[op_i], color=COLORS[op_i], fillcolor=COLORS[op_i])
#import pdb; pdb.set_trace()
g.render(filename, cleanup=True, view=False)
def test_auto_grad():
class Net(torch.nn.Module):
def __init__(self, iS):
super(Net, self).__init__()
self.layer = torch.nn.Linear(iS, 1)
def forward(self, inputs):
outputs = self.layer(inputs)
outputs = torch.exp(outputs)
return outputs.mean()
net = Net(10)
inputs = torch.rand(256, 10)
loss = net(inputs)
first_order_grads = torch.autograd.grad(loss, net.parameters(), retain_graph=True, create_graph=True)
first_order_grads = torch.cat([x.view(-1) for x in first_order_grads])
second_order_grads = []
for grads in first_order_grads:
s_grads = torch.autograd.grad(grads, net.parameters())
second_order_grads.append( s_grads )
def test_one_shot_model(ckpath, use_train):
from models import get_cell_based_tiny_net, get_search_spaces
from datasets import get_datasets, SearchDataset
from config_utils import load_config, dict2config
from utils.nas_utils import evaluate_one_shot
use_train = int(use_train) > 0
#ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-11416-basic.pth'
#ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-28640-basic.pth'
print ('ckpath : {:}'.format(ckpath))
ckp = torch.load(ckpath)
xargs = ckp['args']
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
#config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, None)
config = load_config('./configs/nas-benchmark/algos/DARTS.config', {'class_num': class_num, 'xshape': xshape}, None)
if xargs.dataset == 'cifar10':
cifar_split = load_config('configs/nas-benchmark/cifar-split.txt', None, None)
xvalid_data = deepcopy(train_data)
xvalid_data.transform = valid_data.transform
valid_loader= torch.utils.data.DataLoader(xvalid_data, batch_size=2048, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar_split.valid), num_workers=12, pin_memory=True)
else: raise ValueError('invalid dataset : {:}'.format(xargs.dataseet))
search_space = get_search_spaces('cell', xargs.search_space_name)
model_config = dict2config({'name': 'SETN', 'C': xargs.channel, 'N': xargs.num_cells,
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
'space' : search_space,
'affine' : False, 'track_running_stats': True}, None)
search_model = get_cell_based_tiny_net(model_config)
search_model.load_state_dict( ckp['search_model'] )
search_model = search_model.cuda()
api = API('/home/dxy/.torch/NAS-Bench-201-v1_0-e61699.pth')
archs, probs, accuracies = evaluate_one_shot(search_model, valid_loader, api, use_train)
if __name__ == '__main__':
#test_nas_api()
#for i in range(200): plot('{:04d}'.format(i))
#test_auto_grad()
test_one_shot_model(sys.argv[1], sys.argv[2])