xautodl/lib/trade_models/quant_transformer.py
2021-03-06 21:35:26 -08:00

434 lines
16 KiB
Python
Executable File

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 #
##################################################
from __future__ import division
from __future__ import print_function
import os
import math
import numpy as np
import pandas as pd
import copy
from functools import partial
from typing import Optional
import logging
from qlib.utils import (
unpack_archive_with_buffer,
save_multiple_parts_file,
create_save_path,
drop_nan_by_y_index,
)
from qlib.log import get_module_logger, TimeInspector
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as th_data
import layers as xlayers
from utils import count_parameters
from qlib.model.base import Model
from qlib.data.dataset import DatasetH
from qlib.data.dataset.handler import DataHandlerLP
default_net_config = dict(d_feat=6, hidden_size=48, depth=5, pos_drop=0.1)
default_opt_config = dict(epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam")
class QuantTransformer(Model):
"""Transformer-based Quant Model"""
def __init__(self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs):
# Set logger.
self.logger = get_module_logger("QuantTransformer")
self.logger.info("QuantTransformer pytorch version...")
# set hyper-parameters.
self.net_config = net_config or default_net_config
self.opt_config = opt_config or default_opt_config
self.metric = metric
self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu")
self.seed = seed
self.logger.info(
"Transformer parameters setting:"
"\nnet_config : {:}"
"\nopt_config : {:}"
"\nmetric : {:}"
"\ndevice : {:}"
"\nseed : {:}".format(
self.net_config,
self.opt_config,
self.metric,
self.device,
self.seed,
)
)
if self.seed is not None:
np.random.seed(self.seed)
torch.manual_seed(self.seed)
self.model = TransformerModel(
d_feat=self.net_config["d_feat"],
embed_dim=self.net_config["hidden_size"],
depth=self.net_config["depth"],
pos_drop=self.net_config["pos_drop"],
)
self.logger.info("model: {:}".format(self.model))
self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model)))
if self.opt_config["optimizer"] == "adam":
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.opt_config["lr"])
elif self.opt_config["optimizer"] == "adam":
self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.opt_config["lr"])
else:
raise NotImplementedError("optimizer {:} is not supported!".format(optimizer))
self.fitted = False
self.model.to(self.device)
@property
def use_gpu(self):
self.device == torch.device("cpu")
def loss_fn(self, pred, label):
mask = ~torch.isnan(label)
if self.opt_config["loss"] == "mse":
return F.mse_loss(pred[mask], label[mask])
else:
raise ValueError("unknown loss `{:}`".format(self.loss))
def metric_fn(self, pred, label):
mask = torch.isfinite(label)
if self.metric == "" or self.metric == "loss":
return -self.loss_fn(pred[mask], label[mask])
else:
raise ValueError("unknown metric `{:}`".format(self.metric))
def train_epoch(self, xloader, model, loss_fn, optimizer):
model.train()
scores, losses = [], []
for ibatch, (feats, labels) in enumerate(xloader):
feats = feats.to(self.device, non_blocking=True)
labels = labels.to(self.device, non_blocking=True)
# forward the network
preds = model(feats)
loss = loss_fn(preds, labels)
with torch.no_grad():
score = self.metric_fn(preds, labels)
losses.append(loss.item())
scores.append(loss.item())
# optimize the network
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_value_(model.parameters(), 3.0)
optimizer.step()
return np.mean(losses), np.mean(scores)
def test_epoch(self, xloader, model, loss_fn, metric_fn):
model.eval()
scores, losses = [], []
with torch.no_grad():
for ibatch, (feats, labels) in enumerate(xloader):
feats = feats.to(self.device, non_blocking=True)
labels = labels.to(self.device, non_blocking=True)
# forward the network
preds = model(feats)
loss = loss_fn(preds, labels)
score = self.metric_fn(preds, labels)
losses.append(loss.item())
scores.append(loss.item())
return np.mean(losses), np.mean(scores)
def fit(
self,
dataset: DatasetH,
evals_result=dict(),
verbose=True,
save_path=None,
):
def _prepare_dataset(df_data):
return th_data.TensorDataset(
torch.from_numpy(df_data["feature"].values).float(),
torch.from_numpy(df_data["label"].values).squeeze().float(),
)
df_train, df_valid, df_test = dataset.prepare(
["train", "valid", "test"],
col_set=["feature", "label"],
data_key=DataHandlerLP.DK_L,
)
train_dataset, valid_dataset, test_dataset = (
_prepare_dataset(df_train),
_prepare_dataset(df_valid),
_prepare_dataset(df_test),
)
train_loader = th_data.DataLoader(
train_dataset, batch_size=self.opt_config["batch_size"], shuffle=True, drop_last=False, pin_memory=True
)
valid_loader = th_data.DataLoader(
valid_dataset, batch_size=self.opt_config["batch_size"], shuffle=False, drop_last=False, pin_memory=True
)
test_loader = th_data.DataLoader(
test_dataset, batch_size=self.opt_config["batch_size"], shuffle=False, drop_last=False, pin_memory=True
)
if save_path == None:
save_path = create_save_path(save_path)
stop_steps, best_score, best_epoch = 0, -np.inf, 0
train_loss = 0
evals_result["train"] = []
evals_result["valid"] = []
# train
self.logger.info("Fit procedure for [{:}] with save path={:}".format(self.__class__.__name__, save_path))
def _internal_test():
train_loss, train_score = self.test_epoch(train_loader, self.model, self.loss_fn, self.metric_fn)
valid_loss, valid_score = self.test_epoch(valid_loader, self.model, self.loss_fn, self.metric_fn)
test_loss, test_score = self.test_epoch(test_loader, self.model, self.loss_fn, self.metric_fn)
xstr = "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format(
train_score, valid_score, test_score
)
return dict(train=train_score, valid=valid_score, test=test_score), xstr
_, eval_str = _internal_test()
self.logger.info("Before Training: {:}".format(eval_str))
for iepoch in range(self.opt_config["epochs"]):
self.logger.info("Epoch={:03d}/{:03d} ::==>>".format(iepoch, self.opt_config["epochs"]))
train_loss, train_score = self.train_epoch(train_loader, self.model, self.loss_fn, self.train_optimizer)
self.logger.info("Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score))
eval_score_dict, eval_str = _internal_test()
self.logger.info("Evaluating :: {:}".format(eval_str))
evals_result["train"].append(eval_score_dict["train"])
evals_result["valid"].append(eval_score_dict["valid"])
if eval_score_dict["valid"] > best_score:
stop_steps, best_epoch, best_score = 0, iepoch, eval_score_dict["valid"]
best_param = copy.deepcopy(self.model.state_dict())
else:
stop_steps += 1
if stop_steps >= self.opt_config["early_stop"]:
self.logger.info("early stop at {:}-th epoch, where the best is @{:}".format(iepoch, best_epoch))
break
self.logger.info("The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch))
self.model.load_state_dict(best_param)
torch.save(best_param, save_path)
if self.use_gpu:
torch.cuda.empty_cache()
self.fitted = True
def predict(self, dataset):
if not self.fitted:
raise ValueError("model is not fitted yet!")
x_test = dataset.prepare("test", col_set="feature")
index = x_test.index
self.model.eval()
x_values = x_test.values
sample_num = x_values.shape[0]
preds = []
for begin in range(sample_num)[:: self.batch_size]:
if sample_num - begin < self.batch_size:
end = sample_num
else:
end = begin + self.batch_size
x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device)
with torch.no_grad():
if self.use_gpu:
pred = self.model(x_batch).detach().cpu().numpy()
else:
pred = self.model(x_batch).detach().numpy()
preds.append(pred)
return pd.Series(np.concatenate(preds), index=index)
# Real Model
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
super(Attention, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or math.sqrt(head_dim)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
mlp_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super(Block, self).__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class SimpleEmbed(nn.Module):
def __init__(self, d_feat, embed_dim):
super(SimpleEmbed, self).__init__()
self.d_feat = d_feat
self.embed_dim = embed_dim
self.proj = nn.Linear(d_feat, embed_dim)
def forward(self, x):
x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T]
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
out = self.proj(x) * math.sqrt(self.embed_dim)
return out
class TransformerModel(nn.Module):
def __init__(
self,
d_feat: int,
embed_dim: int = 64,
depth: int = 4,
num_heads: int = 4,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
qk_scale: Optional[float] = None,
pos_drop=0.0,
mlp_drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=None,
):
"""
Args:
d_feat (int, tuple): input image size
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
pos_drop (float): dropout rate for the positional embedding
mlp_drop_rate (float): the dropout rate for MLP layers in a block
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
"""
super(TransformerModel, self).__init__()
self.embed_dim = embed_dim
self.num_features = embed_dim
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_drop)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop_rate,
mlp_drop=mlp_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
)
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
# regression head
self.head = nn.Linear(self.num_features, 1)
xlayers.trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
xlayers.trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_features(self, x):
batch, flatten_size = x.shape
feats = self.input_embed(x) # batch * 60 * 64
cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
feats_w_tp = self.pos_embed(feats_w_ct)
xfeats = feats_w_tp
for block in self.blocks:
xfeats = block(xfeats)
xfeats = self.norm(xfeats)[:, 0]
return xfeats
def forward(self, x):
feats = self.forward_features(x)
predicts = self.head(feats).squeeze(-1)
return predicts