we use an abstract class NASBenchMetaAPI to define the spec of an API; it can be inherited to support different kinds of NAS API, while keep the query interface the same.
269 lines
14 KiB
Python
269 lines
14 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
|
##################################################################
|
|
# Regularized Evolution for Image Classifier Architecture Search #
|
|
##################################################################
|
|
import os, sys, time, glob, random, argparse
|
|
import numpy as np, collections
|
|
from copy import deepcopy
|
|
import torch
|
|
import torch.nn as nn
|
|
from pathlib import Path
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
from config_utils import load_config, dict2config, configure2str
|
|
from datasets import get_datasets, SearchDataset
|
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
|
from utils import get_model_infos, obtain_accuracy
|
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
|
from nas_201_api import NASBench201API as API
|
|
from models import CellStructure, get_search_spaces
|
|
|
|
|
|
class Model(object):
|
|
|
|
def __init__(self):
|
|
self.arch = None
|
|
self.accuracy = None
|
|
|
|
def __str__(self):
|
|
"""Prints a readable version of this bitstring."""
|
|
return '{:}'.format(self.arch)
|
|
|
|
|
|
# This function is to mimic the training and evaluatinig procedure for a single architecture `arch`.
|
|
# The time_cost is calculated as the total training time for a few (e.g., 12 epochs) plus the evaluation time for one epoch.
|
|
# For use_012_epoch_training = True, the architecture is trained for 12 epochs, with LR being decaded from 0.1 to 0.
|
|
# In this case, the LR schedular is converged.
|
|
# For use_012_epoch_training = False, the architecture is planed to be trained for 200 epochs, but we early stop its procedure.
|
|
#
|
|
def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_012_epoch_training=True):
|
|
|
|
if use_012_epoch_training and nas_bench is not None:
|
|
arch_index = nas_bench.query_index_by_arch( arch )
|
|
assert arch_index >= 0, 'can not find this arch : {:}'.format(arch)
|
|
info = nas_bench.get_more_info(arch_index, dataname, iepoch=None, hp='12', is_random=True)
|
|
valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time']
|
|
#_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs
|
|
elif not use_012_epoch_training and nas_bench is not None:
|
|
# Please contact me if you want to use the following logic, because it has some potential issues.
|
|
# Please use `use_012_epoch_training=False` for cifar10 only.
|
|
# It did return values for cifar100 and ImageNet16-120, but it has some potential issues. (Please email me for more details)
|
|
arch_index, nepoch = nas_bench.query_index_by_arch( arch ), 25
|
|
assert arch_index >= 0, 'can not find this arch : {:}'.format(arch)
|
|
xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', iepoch=None, hp='12')
|
|
xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', hp='200')
|
|
info = nas_bench.get_more_info(arch_index, dataname, nepoch, hp='200', True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready).
|
|
cost = nas_bench.get_cost_info(arch_index, dataname, hp='200')
|
|
# The following codes are used to estimate the time cost.
|
|
# When we build NAS-Bench-201, architectures are trained on different machines and we can not use that time record.
|
|
# When we create checkpoints for converged_LR, we run all experiments on 1080Ti, and thus the time for each architecture can be fairly compared.
|
|
nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000,
|
|
'cifar10-valid-train' : 25000, 'cifar10-valid-valid' : 25000,
|
|
'cifar100-train' : 50000, 'cifar100-valid' : 5000}
|
|
estimated_train_cost = xoinfo['train-per-time'] / nums['cifar10-valid-train'] * nums['{:}-train'.format(dataname)] / xocost['latency'] * cost['latency'] * nepoch
|
|
estimated_valid_cost = xoinfo['valid-per-time'] / nums['cifar10-valid-valid'] * nums['{:}-valid'.format(dataname)] / xocost['latency'] * cost['latency']
|
|
try:
|
|
valid_acc, time_cost = info['valid-accuracy'], estimated_train_cost + estimated_valid_cost
|
|
except:
|
|
valid_acc, time_cost = info['valtest-accuracy'], estimated_train_cost + estimated_valid_cost
|
|
else:
|
|
# train a model from scratch.
|
|
raise ValueError('NOT IMPLEMENT YET')
|
|
return valid_acc, time_cost
|
|
|
|
|
|
def random_architecture_func(max_nodes, op_names):
|
|
# return a random architecture
|
|
def random_architecture():
|
|
genotypes = []
|
|
for i in range(1, max_nodes):
|
|
xlist = []
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
op_name = random.choice( op_names )
|
|
xlist.append((op_name, j))
|
|
genotypes.append( tuple(xlist) )
|
|
return CellStructure( genotypes )
|
|
return random_architecture
|
|
|
|
|
|
def mutate_arch_func(op_names):
|
|
"""Computes the architecture for a child of the given parent architecture.
|
|
The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
|
|
"""
|
|
def mutate_arch_func(parent_arch):
|
|
child_arch = deepcopy( parent_arch )
|
|
node_id = random.randint(0, len(child_arch.nodes)-1)
|
|
node_info = list( child_arch.nodes[node_id] )
|
|
snode_id = random.randint(0, len(node_info)-1)
|
|
xop = random.choice( op_names )
|
|
while xop == node_info[snode_id][0]:
|
|
xop = random.choice( op_names )
|
|
node_info[snode_id] = (xop, node_info[snode_id][1])
|
|
child_arch.nodes[node_id] = tuple( node_info )
|
|
return child_arch
|
|
return mutate_arch_func
|
|
|
|
|
|
def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, nas_bench, extra_info, dataname):
|
|
"""Algorithm for regularized evolution (i.e. aging evolution).
|
|
|
|
Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image
|
|
Classifier Architecture Search".
|
|
|
|
Args:
|
|
cycles: the number of cycles the algorithm should run for.
|
|
population_size: the number of individuals to keep in the population.
|
|
sample_size: the number of individuals that should participate in each tournament.
|
|
time_budget: the upper bound of searching cost
|
|
|
|
Returns:
|
|
history: a list of `Model` instances, representing all the models computed
|
|
during the evolution experiment.
|
|
"""
|
|
population = collections.deque()
|
|
history, total_time_cost = [], 0 # Not used by the algorithm, only used to report results.
|
|
|
|
# Initialize the population with random models.
|
|
while len(population) < population_size:
|
|
model = Model()
|
|
model.arch = random_arch()
|
|
model.accuracy, time_cost = train_and_eval(model.arch, nas_bench, extra_info, dataname)
|
|
population.append(model)
|
|
history.append(model)
|
|
total_time_cost += time_cost
|
|
|
|
# Carry out evolution in cycles. Each cycle produces a model and removes
|
|
# another.
|
|
#while len(history) < cycles:
|
|
while total_time_cost < time_budget:
|
|
# Sample randomly chosen models from the current population.
|
|
start_time, sample = time.time(), []
|
|
while len(sample) < sample_size:
|
|
# Inefficient, but written this way for clarity. In the case of neural
|
|
# nets, the efficiency of this line is irrelevant because training neural
|
|
# nets is the rate-determining step.
|
|
candidate = random.choice(list(population))
|
|
sample.append(candidate)
|
|
|
|
# The parent is the best model in the sample.
|
|
parent = max(sample, key=lambda i: i.accuracy)
|
|
|
|
# Create the child model and store it.
|
|
child = Model()
|
|
child.arch = mutate_arch(parent.arch)
|
|
total_time_cost += time.time() - start_time
|
|
child.accuracy, time_cost = train_and_eval(child.arch, nas_bench, extra_info, dataname)
|
|
if total_time_cost + time_cost > time_budget: # return
|
|
return history, total_time_cost
|
|
else:
|
|
total_time_cost += time_cost
|
|
population.append(child)
|
|
history.append(child)
|
|
|
|
# Remove the oldest model.
|
|
population.popleft()
|
|
return history, total_time_cost
|
|
|
|
|
|
def main(xargs, nas_bench):
|
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
|
torch.backends.cudnn.enabled = True
|
|
torch.backends.cudnn.benchmark = False
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.set_num_threads( xargs.workers )
|
|
prepare_seed(xargs.rand_seed)
|
|
logger = prepare_logger(args)
|
|
|
|
if xargs.dataset == 'cifar10':
|
|
dataname = 'cifar10-valid'
|
|
else:
|
|
dataname = xargs.dataset
|
|
if xargs.data_path is not None:
|
|
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
|
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
|
cifar_split = load_config(split_Fpath, None, None)
|
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
|
logger.log('Load split file from {:}'.format(split_Fpath))
|
|
config_path = 'configs/nas-benchmark/algos/R-EA.config'
|
|
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
|
|
# To split data
|
|
train_data_v2 = deepcopy(train_data)
|
|
train_data_v2.transform = valid_data.transform
|
|
valid_data = train_data_v2
|
|
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
|
# data loader
|
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
|
|
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
|
|
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
|
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
|
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
|
|
else:
|
|
config_path = 'configs/nas-benchmark/algos/R-EA.config'
|
|
config = load_config(config_path, None, logger)
|
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
|
extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}
|
|
|
|
search_space = get_search_spaces('cell', xargs.search_space_name)
|
|
random_arch = random_architecture_func(xargs.max_nodes, search_space)
|
|
mutate_arch = mutate_arch_func(search_space)
|
|
#x =random_arch() ; y = mutate_arch(x)
|
|
x_start_time = time.time()
|
|
logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
|
|
logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget))
|
|
history, total_cost = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info, dataname)
|
|
logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_cost, time.time()-x_start_time))
|
|
best_arch = max(history, key=lambda i: i.accuracy)
|
|
best_arch = best_arch.arch
|
|
logger.log('{:} best arch is {:}'.format(time_string(), best_arch))
|
|
|
|
info = nas_bench.query_by_arch( best_arch )
|
|
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
|
else : logger.log('{:}'.format(info))
|
|
logger.log('-'*100)
|
|
logger.close()
|
|
return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
|
# channels and number-of-cells
|
|
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
|
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
|
parser.add_argument('--channel', type=int, help='The number of channels.')
|
|
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
|
parser.add_argument('--ea_cycles', type=int, help='The number of cycles in EA.')
|
|
parser.add_argument('--ea_population', type=int, help='The population size in EA.')
|
|
parser.add_argument('--ea_sample_size', type=int, help='The sample size in EA.')
|
|
parser.add_argument('--ea_fast_by_api', type=int, help='Use our API to speed up the experiments or not.')
|
|
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
|
# log
|
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
|
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
|
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
|
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
|
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
|
args = parser.parse_args()
|
|
#if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
|
args.ea_fast_by_api = args.ea_fast_by_api > 0
|
|
|
|
if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
|
|
nas_bench = None
|
|
else:
|
|
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
|
|
nas_bench = API(args.arch_nas_dataset)
|
|
if args.rand_seed < 0:
|
|
save_dir, all_indexes, num = None, [], 500
|
|
for i in range(num):
|
|
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
|
|
args.rand_seed = random.randint(1, 100000)
|
|
save_dir, index = main(args, nas_bench)
|
|
all_indexes.append( index )
|
|
torch.save(all_indexes, save_dir / 'results.pth')
|
|
else:
|
|
main(args, nas_bench)
|