xautodl/exps/LFNA/lfna.py
2021-05-13 21:33:34 +08:00

263 lines
8.7 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
# python exps/LFNA/lfna.py --env_version v1
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from log_utils import time_string
from log_utils import AverageMeter, convert_secs2time
from utils import split_str2indexes
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from datasets.synthetic_core import get_synthetic_env, EnvSampler
from models.xcore import get_model
from xlayers import super_core, trunc_normal_
from lfna_utils import lfna_setup, train_model, TimeData
from lfna_meta_model import LFNA_Meta
def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger):
base_model.train()
meta_model.train()
loss_meter = AverageMeter()
for ibatch, batch_data in enumerate(loader):
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
timestamps = timestamps.squeeze(dim=-1).to(device)
batch_seq_inputs = batch_seq_inputs.to(device)
batch_seq_targets = batch_seq_targets.to(device)
optimizer.zero_grad()
batch_seq_containers = meta_model(timestamps)
losses = []
for seq_containers, seq_inputs, seq_targets in zip(
batch_seq_containers, batch_seq_inputs, batch_seq_targets
):
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
final_loss = torch.stack(losses).mean()
final_loss.backward()
optimizer.step()
loss_meter.update(final_loss.item())
return loss_meter
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
dynamic_env = get_synthetic_env(mode="train", version=args.env_version)
base_model = get_model(**model_kwargs)
base_model = base_model.to(args.device)
criterion = torch.nn.MSELoss()
shape_container = base_model.get_w_container().to_shape_container()
# pre-train the hypernetwork
timestamps = dynamic_env.get_timestamp(None)
meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps)
meta_model = meta_model.to(args.device)
logger.log("The base-model has {:} weights.".format(base_model.numel()))
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
batch_sampler = EnvSampler(dynamic_env, args.meta_batch, args.sampler_enlarge)
dynamic_env.reset_max_seq_length(args.seq_length)
"""
env_loader = torch.utils.data.DataLoader(
dynamic_env,
batch_size=args.meta_batch,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
"""
env_loader = torch.utils.data.DataLoader(
dynamic_env,
batch_sampler=batch_sampler,
num_workers=args.workers,
pin_memory=True,
)
optimizer = torch.optim.Adam(
meta_model.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True
)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(args.epochs * 0.8),
int(args.epochs * 0.9),
],
gamma=0.1,
)
logger.log("The base-model is\n{:}".format(base_model))
logger.log("The meta-model is\n{:}".format(meta_model))
logger.log("The optimizer is\n{:}".format(optimizer))
logger.log("Per epoch iterations = {:}".format(len(env_loader)))
# LFNA meta-training
per_epoch_time, start_time = AverageMeter(), time.time()
last_success_epoch = 0
for iepoch in range(args.epochs):
head_str = "[{:}] [{:04d}/{:04d}] ".format(
time_string(), iepoch, args.epochs
) + "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
loss_meter = epoch_train(
env_loader,
meta_model,
base_model,
optimizer,
criterion,
args.device,
logger,
)
lr_scheduler.step()
logger.log(
head_str
+ " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter)
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
)
success, best_score = meta_model.save_best(-loss_meter.avg)
if success:
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
last_success_epoch = iepoch
save_checkpoint(
{
"meta_model": meta_model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"iepoch": iepoch,
"args": args,
},
logger.path("model"),
logger,
)
if iepoch - last_success_epoch >= args.early_stop_thresh:
logger.log("Early stop at {:}".format(iepoch))
break
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
w_container_per_epoch = dict()
for idx in range(0, total_bar):
future_time = env_info["{:}-timestamp".format(idx)]
future_x = env_info["{:}-x".format(idx)]
future_y = env_info["{:}-y".format(idx)]
future_container = hypernet(task_embeds[idx])
w_container_per_epoch[idx] = future_container.no_grad_clone()
with torch.no_grad():
future_y_hat = model.forward_with_container(
future_x, w_container_per_epoch[idx]
)
future_loss = criterion(future_y_hat, future_y)
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
save_checkpoint(
{"w_container_per_epoch": w_container_per_epoch},
logger.path(None) / "final-ckp.pth",
logger,
)
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(".")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/lfna-synthetic/lfna-battle",
help="The checkpoint directory.",
)
parser.add_argument(
"--env_version",
type=str,
required=True,
help="The synthetic enviornment version.",
)
parser.add_argument(
"--hidden_dim",
type=int,
default=16,
help="The hidden dimension.",
)
parser.add_argument(
"--layer_dim",
type=int,
default=16,
help="The layer chunk dimension.",
)
parser.add_argument(
"--time_dim",
type=int,
default=16,
help="The timestamp dimension.",
)
#####
parser.add_argument(
"--init_lr",
type=float,
default=0.01,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
"--meta_batch",
type=int,
default=64,
help="The batch size for the meta-model",
)
parser.add_argument(
"--sampler_enlarge",
type=int,
default=5,
help="Enlarge the #iterations for an epoch",
)
parser.add_argument("--epochs", type=int, default=1000, help="The total #epochs.")
parser.add_argument(
"--early_stop_thresh",
type=int,
default=50,
help="The maximum epochs for early stop.",
)
parser.add_argument(
"--seq_length", type=int, default=5, help="The sequence length."
)
parser.add_argument(
"--workers", type=int, default=4, help="The number of workers in parallel."
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
args.save_dir = "{:}-{:}-d{:}_{:}_{:}".format(
args.save_dir, args.env_version, args.hidden_dim, args.layer_dim, args.time_dim
)
main(args)