124 lines
4.0 KiB
Python
124 lines
4.0 KiB
Python
###############################################################
|
|
# NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021 #
|
|
###############################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
|
###############################################################
|
|
# Usage: python exps/NATS-Bench/draw-correlations.py #
|
|
###############################################################
|
|
import os, gc, sys, time, scipy, torch, argparse
|
|
import numpy as np
|
|
from typing import List, Text, Dict, Any
|
|
from shutil import copyfile
|
|
from collections import defaultdict, OrderedDict
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
import matplotlib
|
|
import seaborn as sns
|
|
|
|
matplotlib.use("agg")
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.ticker as ticker
|
|
|
|
from xautodl.config_utils import dict2config, load_config
|
|
from xautodl.log_utils import time_string
|
|
from nats_bench import create
|
|
|
|
|
|
def get_valid_test_acc(api, arch, dataset):
|
|
is_size_space = api.search_space_name == "size"
|
|
if dataset == "cifar10":
|
|
xinfo = api.get_more_info(
|
|
arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
|
)
|
|
test_acc = xinfo["test-accuracy"]
|
|
xinfo = api.get_more_info(
|
|
arch,
|
|
dataset="cifar10-valid",
|
|
hp=90 if is_size_space else 200,
|
|
is_random=False,
|
|
)
|
|
valid_acc = xinfo["valid-accuracy"]
|
|
else:
|
|
xinfo = api.get_more_info(
|
|
arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
|
)
|
|
valid_acc = xinfo["valid-accuracy"]
|
|
test_acc = xinfo["test-accuracy"]
|
|
return (
|
|
valid_acc,
|
|
test_acc,
|
|
"validation = {:.2f}, test = {:.2f}\n".format(valid_acc, test_acc),
|
|
)
|
|
|
|
|
|
def compute_kendalltau(vectori, vectorj):
|
|
# indexes = list(range(len(vectori)))
|
|
# rank_1 = sorted(indexes, key=lambda i: vectori[i])
|
|
# rank_2 = sorted(indexes, key=lambda i: vectorj[i])
|
|
# import pdb; pdb.set_trace()
|
|
coef, p = scipy.stats.kendalltau(vectori, vectorj)
|
|
return coef
|
|
|
|
|
|
def compute_spearmanr(vectori, vectorj):
|
|
coef, p = scipy.stats.spearmanr(vectori, vectorj)
|
|
return coef
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="output/vis-nas-bench/nas-algos",
|
|
help="Folder to save checkpoints and log.",
|
|
)
|
|
parser.add_argument(
|
|
"--search_space",
|
|
type=str,
|
|
choices=["tss", "sss"],
|
|
help="Choose the search space.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
save_dir = Path(args.save_dir)
|
|
|
|
api = create(None, "tss", fast_mode=True, verbose=False)
|
|
indexes = list(range(1, 10000, 300))
|
|
scores_1 = []
|
|
scores_2 = []
|
|
for index in indexes:
|
|
valid_acc, test_acc, _ = get_valid_test_acc(api, index, "cifar10")
|
|
scores_1.append(valid_acc)
|
|
scores_2.append(test_acc)
|
|
correlation = compute_kendalltau(scores_1, scores_2)
|
|
print(
|
|
"The kendall tau correlation of {:} samples : {:}".format(
|
|
len(indexes), correlation
|
|
)
|
|
)
|
|
correlation = compute_spearmanr(scores_1, scores_2)
|
|
print(
|
|
"The spearmanr correlation of {:} samples : {:}".format(
|
|
len(indexes), correlation
|
|
)
|
|
)
|
|
# scores_1 = ['{:.2f}'.format(x) for x in scores_1]
|
|
# scores_2 = ['{:.2f}'.format(x) for x in scores_2]
|
|
# print(', '.join(scores_1))
|
|
# print(', '.join(scores_2))
|
|
|
|
dpi, width, height = 250, 1000, 1000
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 14, 14
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
|
ax.scatter(scores_1, scores_2, marker="^", s=0.5, c="tab:green", alpha=0.8)
|
|
|
|
save_path = "/Users/xuanyidong/Desktop/test-temp-rank.png"
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
|
plt.close("all")
|