368 lines
13 KiB
Python
368 lines
13 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
|
###################################################################
|
|
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale #
|
|
# required to install hpbandster ##################################
|
|
# pip install hpbandster ##################################
|
|
###################################################################
|
|
# bash ./scripts-search/algos/BOHB.sh -1 ##################
|
|
###################################################################
|
|
import os, sys, time, random, argparse
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
import torch
|
|
|
|
from xautodl.config_utils import load_config
|
|
from xautodl.datasets import get_datasets, SearchDataset
|
|
from xautodl.procedures import prepare_seed, prepare_logger
|
|
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
|
|
from xautodl.models import CellStructure, get_search_spaces
|
|
from nas_201_api import NASBench201API as API
|
|
|
|
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
|
|
import ConfigSpace
|
|
from hpbandster.optimizers.bohb import BOHB
|
|
import hpbandster.core.nameserver as hpns
|
|
from hpbandster.core.worker import Worker
|
|
|
|
|
|
def get_configuration_space(max_nodes, search_space):
|
|
cs = ConfigSpace.ConfigurationSpace()
|
|
# edge2index = {}
|
|
for i in range(1, max_nodes):
|
|
for j in range(i):
|
|
node_str = "{:}<-{:}".format(i, j)
|
|
cs.add_hyperparameter(
|
|
ConfigSpace.CategoricalHyperparameter(node_str, search_space)
|
|
)
|
|
return cs
|
|
|
|
|
|
def config2structure_func(max_nodes):
|
|
def config2structure(config):
|
|
genotypes = []
|
|
for i in range(1, max_nodes):
|
|
xlist = []
|
|
for j in range(i):
|
|
node_str = "{:}<-{:}".format(i, j)
|
|
op_name = config[node_str]
|
|
xlist.append((op_name, j))
|
|
genotypes.append(tuple(xlist))
|
|
return CellStructure(genotypes)
|
|
|
|
return config2structure
|
|
|
|
|
|
class MyWorker(Worker):
|
|
def __init__(
|
|
self,
|
|
*args,
|
|
convert_func=None,
|
|
dataname=None,
|
|
nas_bench=None,
|
|
time_budget=None,
|
|
**kwargs
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
self.convert_func = convert_func
|
|
self._dataname = dataname
|
|
self._nas_bench = nas_bench
|
|
self.time_budget = time_budget
|
|
self.seen_archs = []
|
|
self.sim_cost_time = 0
|
|
self.real_cost_time = 0
|
|
self.is_end = False
|
|
|
|
def get_the_best(self):
|
|
assert len(self.seen_archs) > 0
|
|
best_index, best_acc = -1, None
|
|
for arch_index in self.seen_archs:
|
|
info = self._nas_bench.get_more_info(
|
|
arch_index, self._dataname, None, hp="200", is_random=True
|
|
)
|
|
vacc = info["valid-accuracy"]
|
|
if best_acc is None or best_acc < vacc:
|
|
best_acc = vacc
|
|
best_index = arch_index
|
|
assert best_index != -1
|
|
return best_index
|
|
|
|
def compute(self, config, budget, **kwargs):
|
|
start_time = time.time()
|
|
structure = self.convert_func(config)
|
|
arch_index = self._nas_bench.query_index_by_arch(structure)
|
|
info = self._nas_bench.get_more_info(
|
|
arch_index, self._dataname, None, hp="200", is_random=True
|
|
)
|
|
cur_time = info["train-all-time"] + info["valid-per-time"]
|
|
cur_vacc = info["valid-accuracy"]
|
|
self.real_cost_time += time.time() - start_time
|
|
if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end:
|
|
self.sim_cost_time += cur_time
|
|
self.seen_archs.append(arch_index)
|
|
return {
|
|
"loss": 100 - float(cur_vacc),
|
|
"info": {
|
|
"seen-arch": len(self.seen_archs),
|
|
"sim-test-time": self.sim_cost_time,
|
|
"current-arch": arch_index,
|
|
},
|
|
}
|
|
else:
|
|
self.is_end = True
|
|
return {
|
|
"loss": 100,
|
|
"info": {
|
|
"seen-arch": len(self.seen_archs),
|
|
"sim-test-time": self.sim_cost_time,
|
|
"current-arch": None,
|
|
},
|
|
}
|
|
|
|
|
|
def main(xargs, nas_bench):
|
|
assert torch.cuda.is_available(), "CUDA is not available."
|
|
torch.backends.cudnn.enabled = True
|
|
torch.backends.cudnn.benchmark = False
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.set_num_threads(xargs.workers)
|
|
prepare_seed(xargs.rand_seed)
|
|
logger = prepare_logger(args)
|
|
|
|
if xargs.dataset == "cifar10":
|
|
dataname = "cifar10-valid"
|
|
else:
|
|
dataname = xargs.dataset
|
|
if xargs.data_path is not None:
|
|
train_data, valid_data, xshape, class_num = get_datasets(
|
|
xargs.dataset, xargs.data_path, -1
|
|
)
|
|
split_Fpath = "configs/nas-benchmark/cifar-split.txt"
|
|
cifar_split = load_config(split_Fpath, None, None)
|
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
|
logger.log("Load split file from {:}".format(split_Fpath))
|
|
config_path = "configs/nas-benchmark/algos/R-EA.config"
|
|
config = load_config(
|
|
config_path, {"class_num": class_num, "xshape": xshape}, logger
|
|
)
|
|
# To split data
|
|
train_data_v2 = deepcopy(train_data)
|
|
train_data_v2.transform = valid_data.transform
|
|
valid_data = train_data_v2
|
|
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
|
# data loader
|
|
train_loader = torch.utils.data.DataLoader(
|
|
train_data,
|
|
batch_size=config.batch_size,
|
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
|
|
num_workers=xargs.workers,
|
|
pin_memory=True,
|
|
)
|
|
valid_loader = torch.utils.data.DataLoader(
|
|
valid_data,
|
|
batch_size=config.batch_size,
|
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
|
|
num_workers=xargs.workers,
|
|
pin_memory=True,
|
|
)
|
|
logger.log(
|
|
"||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
|
|
xargs.dataset, len(train_loader), len(valid_loader), config.batch_size
|
|
)
|
|
)
|
|
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
|
|
extra_info = {
|
|
"config": config,
|
|
"train_loader": train_loader,
|
|
"valid_loader": valid_loader,
|
|
}
|
|
else:
|
|
config_path = "configs/nas-benchmark/algos/R-EA.config"
|
|
config = load_config(config_path, None, logger)
|
|
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
|
|
extra_info = {"config": config, "train_loader": None, "valid_loader": None}
|
|
|
|
# nas dataset load
|
|
assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset)
|
|
search_space = get_search_spaces("cell", xargs.search_space_name)
|
|
cs = get_configuration_space(xargs.max_nodes, search_space)
|
|
|
|
config2structure = config2structure_func(xargs.max_nodes)
|
|
hb_run_id = "0"
|
|
|
|
NS = hpns.NameServer(run_id=hb_run_id, host="localhost", port=0)
|
|
ns_host, ns_port = NS.start()
|
|
num_workers = 1
|
|
|
|
# nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
|
|
# logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
|
|
workers = []
|
|
for i in range(num_workers):
|
|
w = MyWorker(
|
|
nameserver=ns_host,
|
|
nameserver_port=ns_port,
|
|
convert_func=config2structure,
|
|
dataname=dataname,
|
|
nas_bench=nas_bench,
|
|
time_budget=xargs.time_budget,
|
|
run_id=hb_run_id,
|
|
id=i,
|
|
)
|
|
w.run(background=True)
|
|
workers.append(w)
|
|
|
|
start_time = time.time()
|
|
bohb = BOHB(
|
|
configspace=cs,
|
|
run_id=hb_run_id,
|
|
eta=3,
|
|
min_budget=12,
|
|
max_budget=200,
|
|
nameserver=ns_host,
|
|
nameserver_port=ns_port,
|
|
num_samples=xargs.num_samples,
|
|
random_fraction=xargs.random_fraction,
|
|
bandwidth_factor=xargs.bandwidth_factor,
|
|
ping_interval=10,
|
|
min_bandwidth=xargs.min_bandwidth,
|
|
)
|
|
|
|
results = bohb.run(xargs.n_iters, min_n_workers=num_workers)
|
|
|
|
bohb.shutdown(shutdown_workers=True)
|
|
NS.shutdown()
|
|
|
|
real_cost_time = time.time() - start_time
|
|
|
|
id2config = results.get_id2config_mapping()
|
|
incumbent = results.get_incumbent_id()
|
|
logger.log(
|
|
"Best found configuration: {:} within {:.3f} s".format(
|
|
id2config[incumbent]["config"], real_cost_time
|
|
)
|
|
)
|
|
best_arch = config2structure(id2config[incumbent]["config"])
|
|
|
|
info = nas_bench.query_by_arch(best_arch, "200")
|
|
if info is None:
|
|
logger.log("Did not find this architecture : {:}.".format(best_arch))
|
|
else:
|
|
logger.log("{:}".format(info))
|
|
logger.log("-" * 100)
|
|
|
|
logger.log(
|
|
"workers : {:.1f}s with {:} archs".format(
|
|
workers[0].time_budget, len(workers[0].seen_archs)
|
|
)
|
|
)
|
|
logger.close()
|
|
return logger.log_dir, nas_bench.query_index_by_arch(best_arch), real_cost_time
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
"BOHB: Robust and Efficient Hyperparameter Optimization at Scale"
|
|
)
|
|
parser.add_argument("--data_path", type=str, help="Path to dataset")
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
choices=["cifar10", "cifar100", "ImageNet16-120"],
|
|
help="Choose between Cifar10/100 and ImageNet-16.",
|
|
)
|
|
# channels and number-of-cells
|
|
parser.add_argument("--search_space_name", type=str, help="The search space name.")
|
|
parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.")
|
|
parser.add_argument("--channel", type=int, help="The number of channels.")
|
|
parser.add_argument(
|
|
"--num_cells", type=int, help="The number of cells in one stage."
|
|
)
|
|
parser.add_argument(
|
|
"--time_budget",
|
|
type=int,
|
|
help="The total time cost budge for searching (in seconds).",
|
|
)
|
|
# BOHB
|
|
parser.add_argument(
|
|
"--strategy",
|
|
default="sampling",
|
|
type=str,
|
|
nargs="?",
|
|
help="optimization strategy for the acquisition function",
|
|
)
|
|
parser.add_argument(
|
|
"--min_bandwidth",
|
|
default=0.3,
|
|
type=float,
|
|
nargs="?",
|
|
help="minimum bandwidth for KDE",
|
|
)
|
|
parser.add_argument(
|
|
"--num_samples",
|
|
default=64,
|
|
type=int,
|
|
nargs="?",
|
|
help="number of samples for the acquisition function",
|
|
)
|
|
parser.add_argument(
|
|
"--random_fraction",
|
|
default=0.33,
|
|
type=float,
|
|
nargs="?",
|
|
help="fraction of random configurations",
|
|
)
|
|
parser.add_argument(
|
|
"--bandwidth_factor",
|
|
default=3,
|
|
type=int,
|
|
nargs="?",
|
|
help="factor multiplied to the bandwidth",
|
|
)
|
|
parser.add_argument(
|
|
"--n_iters",
|
|
default=100,
|
|
type=int,
|
|
nargs="?",
|
|
help="number of iterations for optimization method",
|
|
)
|
|
# log
|
|
parser.add_argument(
|
|
"--workers",
|
|
type=int,
|
|
default=2,
|
|
help="number of data loading workers (default: 2)",
|
|
)
|
|
parser.add_argument(
|
|
"--save_dir", type=str, help="Folder to save checkpoints and log."
|
|
)
|
|
parser.add_argument(
|
|
"--arch_nas_dataset",
|
|
type=str,
|
|
help="The path to load the architecture dataset (tiny-nas-benchmark).",
|
|
)
|
|
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
|
|
parser.add_argument("--rand_seed", type=int, help="manual seed")
|
|
args = parser.parse_args()
|
|
# if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
|
if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
|
|
nas_bench = None
|
|
else:
|
|
print(
|
|
"{:} build NAS-Benchmark-API from {:}".format(
|
|
time_string(), args.arch_nas_dataset
|
|
)
|
|
)
|
|
nas_bench = API(args.arch_nas_dataset)
|
|
if args.rand_seed < 0:
|
|
save_dir, all_indexes, num, all_times = None, [], 500, []
|
|
for i in range(num):
|
|
print("{:} : {:03d}/{:03d}".format(time_string(), i, num))
|
|
args.rand_seed = random.randint(1, 100000)
|
|
save_dir, index, ctime = main(args, nas_bench)
|
|
all_indexes.append(index)
|
|
all_times.append(ctime)
|
|
print("\n average time : {:.3f} s".format(sum(all_times) / len(all_times)))
|
|
torch.save(all_indexes, save_dir / "results.pth")
|
|
else:
|
|
main(args, nas_bench)
|