xautodl/exps/algos/ENAS.py

579 lines
20 KiB
Python

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
##########################################################################
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
##########################################################################
import os, sys, time, glob, random, argparse
import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
from xautodl.config_utils import load_config, dict2config, configure2str
from xautodl.datasets import get_datasets, get_nas_search_loaders
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from xautodl.utils import get_model_infos, obtain_accuracy
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.models import get_cell_based_tiny_net, get_search_spaces
from nas_201_api import NASBench201API as API
def train_shared_cnn(
xloader,
shared_cnn,
controller,
criterion,
scheduler,
optimizer,
epoch_str,
print_freq,
logger,
):
data_time, batch_time = AverageMeter(), AverageMeter()
losses, top1s, top5s, xend = (
AverageMeter(),
AverageMeter(),
AverageMeter(),
time.time(),
)
shared_cnn.train()
controller.eval()
for step, (inputs, targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
targets = targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - xend)
with torch.no_grad():
_, _, sampled_arch = controller()
optimizer.zero_grad()
shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
loss = criterion(logits, targets)
loss.backward()
torch.nn.utils.clip_grad_norm_(shared_cnn.parameters(), 5)
optimizer.step()
# record
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1s.update(prec1.item(), inputs.size(0))
top5s.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - xend)
xend = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = (
"*Train-Shared-CNN* "
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
)
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
loss=losses, top1=top1s, top5=top5s
)
logger.log(Sstr + " " + Tstr + " " + Wstr)
return losses.avg, top1s.avg, top5s.avg
def train_controller(
xloader,
shared_cnn,
controller,
criterion,
optimizer,
config,
epoch_str,
print_freq,
logger,
):
# config. (containing some necessary arg)
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
data_time, batch_time = AverageMeter(), AverageMeter()
(
GradnormMeter,
LossMeter,
ValAccMeter,
EntropyMeter,
BaselineMeter,
RewardMeter,
xend,
) = (
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
time.time(),
)
shared_cnn.eval()
controller.train()
controller.zero_grad()
# for step, (inputs, targets) in enumerate(xloader):
loader_iter = iter(xloader)
for step in range(config.ctl_train_steps * config.ctl_num_aggre):
try:
inputs, targets = next(loader_iter)
except:
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
targets = targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - xend)
log_prob, entropy, sampled_arch = controller()
with torch.no_grad():
shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
val_top1 = val_top1.view(-1) / 100
reward = val_top1 + config.ctl_entropy_w * entropy
if config.baseline is None:
baseline = val_top1
else:
baseline = config.baseline - (1 - config.ctl_bl_dec) * (
config.baseline - reward
)
loss = -1 * log_prob * (reward - baseline)
# account
RewardMeter.update(reward.item())
BaselineMeter.update(baseline.item())
ValAccMeter.update(val_top1.item() * 100)
LossMeter.update(loss.item())
EntropyMeter.update(entropy.item())
# Average gradient over controller_num_aggregate samples
loss = loss / config.ctl_num_aggre
loss.backward(retain_graph=True)
# measure elapsed time
batch_time.update(time.time() - xend)
xend = time.time()
if (step + 1) % config.ctl_num_aggre == 0:
grad_norm = torch.nn.utils.clip_grad_norm_(controller.parameters(), 5.0)
GradnormMeter.update(grad_norm)
optimizer.step()
controller.zero_grad()
if step % print_freq == 0:
Sstr = (
"*Train-Controller* "
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(
epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre
)
)
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})".format(
loss=LossMeter,
top1=ValAccMeter,
reward=RewardMeter,
basel=BaselineMeter,
)
Estr = "Entropy={:.4f} ({:.4f})".format(EntropyMeter.val, EntropyMeter.avg)
logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Estr)
return (
LossMeter.avg,
ValAccMeter.avg,
BaselineMeter.avg,
RewardMeter.avg,
baseline.item(),
)
def get_best_arch(controller, shared_cnn, xloader, n_samples=10):
with torch.no_grad():
controller.eval()
shared_cnn.eval()
archs, valid_accs = [], []
loader_iter = iter(xloader)
for i in range(n_samples):
try:
inputs, targets = next(loader_iter)
except:
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
_, _, sampled_arch = controller()
arch = shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
val_top1, val_top5 = obtain_accuracy(
logits.cpu().data, targets.data, topk=(1, 5)
)
archs.append(arch)
valid_accs.append(val_top1.item())
best_idx = np.argmax(valid_accs)
best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
return best_arch, best_valid_acc
def valid_func(xloader, network, criterion):
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.eval()
end = time.time()
with torch.no_grad():
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(
logits.data, arch_targets.data, topk=(1, 5)
)
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
def main(xargs):
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads(xargs.workers)
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, test_data, xshape, class_num = get_datasets(
xargs.dataset, xargs.data_path, -1
)
logger.log("use config from : {:}".format(xargs.config_path))
config = load_config(
xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger
)
_, train_loader, valid_loader = get_nas_search_loaders(
train_data,
test_data,
xargs.dataset,
"configs/nas-benchmark/",
config.batch_size,
xargs.workers,
)
# since ENAS will train the controller on valid-loader, we need to use train transformation for valid-loader
valid_loader.dataset.transform = deepcopy(train_loader.dataset.transform)
if hasattr(valid_loader.dataset, "transforms"):
valid_loader.dataset.transforms = deepcopy(train_loader.dataset.transforms)
# data loader
logger.log(
"||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
xargs.dataset, len(train_loader), len(valid_loader), config.batch_size
)
)
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
search_space = get_search_spaces("cell", xargs.search_space_name)
model_config = dict2config(
{
"name": "ENAS",
"C": xargs.channel,
"N": xargs.num_cells,
"max_nodes": xargs.max_nodes,
"num_classes": class_num,
"space": search_space,
"affine": False,
"track_running_stats": bool(xargs.track_running_stats),
},
None,
)
shared_cnn = get_cell_based_tiny_net(model_config)
controller = shared_cnn.create_controller()
w_optimizer, w_scheduler, criterion = get_optim_scheduler(
shared_cnn.parameters(), config
)
a_optimizer = torch.optim.Adam(
controller.parameters(),
lr=config.controller_lr,
betas=config.controller_betas,
eps=config.controller_eps,
)
logger.log("w-optimizer : {:}".format(w_optimizer))
logger.log("a-optimizer : {:}".format(a_optimizer))
logger.log("w-scheduler : {:}".format(w_scheduler))
logger.log("criterion : {:}".format(criterion))
# flop, param = get_model_infos(shared_cnn, xshape)
# logger.log('{:}'.format(shared_cnn))
# logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
logger.log("search-space : {:}".format(search_space))
if xargs.arch_nas_dataset is None:
api = None
else:
api = API(xargs.arch_nas_dataset)
logger.log("{:} create API = {:} done".format(time_string(), api))
shared_cnn, controller, criterion = (
torch.nn.DataParallel(shared_cnn).cuda(),
controller.cuda(),
criterion.cuda(),
)
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
if last_info.exists(): # automatically resume from previous checkpoint
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_info = torch.load(last_info)
start_epoch = last_info["epoch"]
checkpoint = torch.load(last_info["last_checkpoint"])
genotypes = checkpoint["genotypes"]
baseline = checkpoint["baseline"]
valid_accuracies = checkpoint["valid_accuracies"]
shared_cnn.load_state_dict(checkpoint["shared_cnn"])
controller.load_state_dict(checkpoint["controller"])
w_scheduler.load_state_dict(checkpoint["w_scheduler"])
w_optimizer.load_state_dict(checkpoint["w_optimizer"])
a_optimizer.load_state_dict(checkpoint["a_optimizer"])
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
)
)
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes, baseline = 0, {"best": -1}, {}, None
# start training
start_time, search_time, epoch_time, total_epoch = (
time.time(),
AverageMeter(),
AverageMeter(),
config.epochs + config.warmup,
)
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.val * (total_epoch - epoch), True)
)
epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch)
logger.log(
"\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}".format(
epoch_str, need_time, min(w_scheduler.get_lr()), baseline
)
)
cnn_loss, cnn_top1, cnn_top5 = train_shared_cnn(
train_loader,
shared_cnn,
controller,
criterion,
w_scheduler,
w_optimizer,
epoch_str,
xargs.print_freq,
logger,
)
logger.log(
"[{:}] shared-cnn : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format(
epoch_str, cnn_loss, cnn_top1, cnn_top5
)
)
ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline = train_controller(
valid_loader,
shared_cnn,
controller,
criterion,
a_optimizer,
dict2config(
{
"baseline": baseline,
"ctl_train_steps": xargs.controller_train_steps,
"ctl_num_aggre": xargs.controller_num_aggregate,
"ctl_entropy_w": xargs.controller_entropy_weight,
"ctl_bl_dec": xargs.controller_bl_dec,
},
None,
),
epoch_str,
xargs.print_freq,
logger,
)
search_time.update(time.time() - start_time)
logger.log(
"[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}, time-cost={:.1f} s".format(
epoch_str,
ctl_loss,
ctl_acc,
ctl_baseline,
ctl_reward,
baseline,
search_time.sum,
)
)
best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader)
shared_cnn.module.update_arch(best_arch)
_, best_valid_acc, _ = valid_func(valid_loader, shared_cnn, criterion)
genotypes[epoch] = best_arch
# check the best accuracy
valid_accuracies[epoch] = best_valid_acc
if best_valid_acc > valid_accuracies["best"]:
valid_accuracies["best"] = best_valid_acc
genotypes["best"] = best_arch
find_best = True
else:
find_best = False
logger.log(
"<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch])
)
# save checkpoint
save_path = save_checkpoint(
{
"epoch": epoch + 1,
"args": deepcopy(xargs),
"baseline": baseline,
"shared_cnn": shared_cnn.state_dict(),
"controller": controller.state_dict(),
"w_optimizer": w_optimizer.state_dict(),
"a_optimizer": a_optimizer.state_dict(),
"w_scheduler": w_scheduler.state_dict(),
"genotypes": genotypes,
"valid_accuracies": valid_accuracies,
},
model_base_path,
logger,
)
last_info = save_checkpoint(
{
"epoch": epoch + 1,
"args": deepcopy(args),
"last_checkpoint": save_path,
},
logger.path("info"),
logger,
)
if find_best:
logger.log(
"<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.".format(
epoch_str, best_valid_acc
)
)
copy_checkpoint(model_base_path, model_best_path, logger)
if api is not None:
logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200")))
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log("\n" + "-" * 100)
logger.log(
"During searching, the best architecture is {:}".format(genotypes["best"])
)
logger.log("Its accuracy is {:.2f}%".format(valid_accuracies["best"]))
logger.log(
"Randomly select {:} architectures and select the best.".format(
xargs.controller_num_samples
)
)
start_time = time.time()
final_arch, _ = get_best_arch(
controller, shared_cnn, valid_loader, xargs.controller_num_samples
)
search_time.update(time.time() - start_time)
shared_cnn.module.update_arch(final_arch)
final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion)
logger.log("The Selected Final Architecture : {:}".format(final_arch))
logger.log(
"Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%".format(
final_loss, final_top1, final_top5
)
)
logger.log(
"ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format(
total_epoch, search_time.sum, final_arch
)
)
if api is not None:
logger.log("{:}".format(api.query_by_arch(final_arch)))
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("ENAS")
parser.add_argument("--data_path", type=str, help="The path to dataset")
parser.add_argument(
"--dataset",
type=str,
choices=["cifar10", "cifar100", "ImageNet16-120"],
help="Choose between Cifar10/100 and ImageNet-16.",
)
# channels and number-of-cells
parser.add_argument(
"--track_running_stats",
type=int,
choices=[0, 1],
help="Whether use track_running_stats or not in the BN layer.",
)
parser.add_argument("--search_space_name", type=str, help="The search space name.")
parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.")
parser.add_argument("--channel", type=int, help="The number of channels.")
parser.add_argument(
"--num_cells", type=int, help="The number of cells in one stage."
)
parser.add_argument(
"--config_path", type=str, help="The config file to train ENAS."
)
parser.add_argument("--controller_train_steps", type=int, help=".")
parser.add_argument("--controller_num_aggregate", type=int, help=".")
parser.add_argument(
"--controller_entropy_weight",
type=float,
help="The weight for the entropy of the controller.",
)
parser.add_argument("--controller_bl_dec", type=float, help=".")
parser.add_argument("--controller_num_samples", type=int, help=".")
# log
parser.add_argument(
"--workers",
type=int,
default=2,
help="number of data loading workers (default: 2)",
)
parser.add_argument(
"--save_dir", type=str, help="Folder to save checkpoints and log."
)
parser.add_argument(
"--arch_nas_dataset",
type=str,
help="The path to load the architecture dataset (nas-benchmark).",
)
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
parser.add_argument("--rand_seed", type=int, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
main(args)