xautodl/exps/algos/GDAS.py

405 lines
15 KiB
Python

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
###########################################################################
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
###########################################################################
import sys, time, random, argparse
from copy import deepcopy
import torch
from xautodl.config_utils import load_config, dict2config
from xautodl.datasets import get_datasets, get_nas_search_loaders
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from xautodl.utils import get_model_infos, obtain_accuracy
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.models import get_cell_based_tiny_net, get_search_spaces
from nas_201_api import NASBench201API as API
def search_func(
xloader,
network,
criterion,
scheduler,
w_optimizer,
a_optimizer,
epoch_str,
print_freq,
logger,
):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.train()
end = time.time()
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(
xloader
):
scheduler.update(None, 1.0 * step / len(xloader))
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# update the weights
w_optimizer.zero_grad()
_, logits = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
torch.nn.utils.clip_grad_norm_(network.parameters(), 5)
w_optimizer.step()
# record
base_prec1, base_prec5 = obtain_accuracy(
logits.data, base_targets.data, topk=(1, 5)
)
base_losses.update(base_loss.item(), base_inputs.size(0))
base_top1.update(base_prec1.item(), base_inputs.size(0))
base_top5.update(base_prec5.item(), base_inputs.size(0))
# update the architecture-weight
a_optimizer.zero_grad()
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
arch_loss.backward()
a_optimizer.step()
# record
arch_prec1, arch_prec5 = obtain_accuracy(
logits.data, arch_targets.data, topk=(1, 5)
)
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = (
"*SEARCH* "
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
)
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
loss=base_losses, top1=base_top1, top5=base_top5
)
Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
loss=arch_losses, top1=arch_top1, top5=arch_top5
)
logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr)
return (
base_losses.avg,
base_top1.avg,
base_top5.avg,
arch_losses.avg,
arch_top1.avg,
arch_top5.avg,
)
def main(xargs):
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads(xargs.workers)
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(
xargs.dataset, xargs.data_path, -1
)
# config_path = 'configs/nas-benchmark/algos/GDAS.config'
config = load_config(
xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger
)
search_loader, _, valid_loader = get_nas_search_loaders(
train_data,
valid_data,
xargs.dataset,
"configs/nas-benchmark/",
config.batch_size,
xargs.workers,
)
logger.log(
"||||||| {:10s} ||||||| Search-Loader-Num={:}, batch size={:}".format(
xargs.dataset, len(search_loader), config.batch_size
)
)
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
search_space = get_search_spaces("cell", xargs.search_space_name)
if xargs.model_config is None:
model_config = dict2config(
{
"name": "GDAS",
"C": xargs.channel,
"N": xargs.num_cells,
"max_nodes": xargs.max_nodes,
"num_classes": class_num,
"space": search_space,
"affine": False,
"track_running_stats": bool(xargs.track_running_stats),
},
None,
)
else:
model_config = load_config(
xargs.model_config,
{
"num_classes": class_num,
"space": search_space,
"affine": False,
"track_running_stats": bool(xargs.track_running_stats),
},
None,
)
search_model = get_cell_based_tiny_net(model_config)
logger.log("search-model :\n{:}".format(search_model))
logger.log("model-config : {:}".format(model_config))
w_optimizer, w_scheduler, criterion = get_optim_scheduler(
search_model.get_weights(), config
)
a_optimizer = torch.optim.Adam(
search_model.get_alphas(),
lr=xargs.arch_learning_rate,
betas=(0.5, 0.999),
weight_decay=xargs.arch_weight_decay,
)
logger.log("w-optimizer : {:}".format(w_optimizer))
logger.log("a-optimizer : {:}".format(a_optimizer))
logger.log("w-scheduler : {:}".format(w_scheduler))
logger.log("criterion : {:}".format(criterion))
flop, param = get_model_infos(search_model, xshape)
logger.log("FLOP = {:.2f} M, Params = {:.2f} MB".format(flop, param))
logger.log("search-space [{:} ops] : {:}".format(len(search_space), search_space))
if xargs.arch_nas_dataset is None:
api = None
else:
api = API(xargs.arch_nas_dataset)
logger.log("{:} create API = {:} done".format(time_string(), api))
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_info = torch.load(last_info)
start_epoch = last_info["epoch"]
checkpoint = torch.load(last_info["last_checkpoint"])
genotypes = checkpoint["genotypes"]
valid_accuracies = checkpoint["valid_accuracies"]
search_model.load_state_dict(checkpoint["search_model"])
w_scheduler.load_state_dict(checkpoint["w_scheduler"])
w_optimizer.load_state_dict(checkpoint["w_optimizer"])
a_optimizer.load_state_dict(checkpoint["a_optimizer"])
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
)
)
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes = (
0,
{"best": -1},
{-1: search_model.genotype()},
)
# start training
start_time, search_time, epoch_time, total_epoch = (
time.time(),
AverageMeter(),
AverageMeter(),
config.epochs + config.warmup,
)
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.val * (total_epoch - epoch), True)
)
epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch)
search_model.set_tau(
xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1)
)
logger.log(
"\n[Search the {:}-th epoch] {:}, tau={:}, LR={:}".format(
epoch_str, need_time, search_model.get_tau(), min(w_scheduler.get_lr())
)
)
(
search_w_loss,
search_w_top1,
search_w_top5,
valid_a_loss,
valid_a_top1,
valid_a_top5,
) = search_func(
search_loader,
network,
criterion,
w_scheduler,
w_optimizer,
a_optimizer,
epoch_str,
xargs.print_freq,
logger,
)
search_time.update(time.time() - start_time)
logger.log(
"[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format(
epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum
)
)
logger.log(
"[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format(
epoch_str, valid_a_loss, valid_a_top1, valid_a_top5
)
)
# check the best accuracy
valid_accuracies[epoch] = valid_a_top1
if valid_a_top1 > valid_accuracies["best"]:
valid_accuracies["best"] = valid_a_top1
genotypes["best"] = search_model.genotype()
find_best = True
else:
find_best = False
genotypes[epoch] = search_model.genotype()
logger.log(
"<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch])
)
# save checkpoint
save_path = save_checkpoint(
{
"epoch": epoch + 1,
"args": deepcopy(xargs),
"search_model": search_model.state_dict(),
"w_optimizer": w_optimizer.state_dict(),
"a_optimizer": a_optimizer.state_dict(),
"w_scheduler": w_scheduler.state_dict(),
"genotypes": genotypes,
"valid_accuracies": valid_accuracies,
},
model_base_path,
logger,
)
last_info = save_checkpoint(
{
"epoch": epoch + 1,
"args": deepcopy(args),
"last_checkpoint": save_path,
},
logger.path("info"),
logger,
)
if find_best:
logger.log(
"<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.".format(
epoch_str, valid_a_top1
)
)
copy_checkpoint(model_base_path, model_best_path, logger)
with torch.no_grad():
logger.log("{:}".format(search_model.show_alphas()))
if api is not None:
logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200")))
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log("\n" + "-" * 100)
# check the performance from the architecture dataset
logger.log(
"GDAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format(
total_epoch, search_time.sum, genotypes[total_epoch - 1]
)
)
if api is not None:
logger.log("{:}".format(api.query_by_arch(genotypes[total_epoch - 1], "200")))
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("GDAS")
parser.add_argument("--data_path", type=str, help="The path to dataset")
parser.add_argument(
"--dataset",
type=str,
choices=["cifar10", "cifar100", "ImageNet16-120"],
help="Choose between Cifar10/100 and ImageNet-16.",
)
# channels and number-of-cells
parser.add_argument("--search_space_name", type=str, help="The search space name.")
parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.")
parser.add_argument("--channel", type=int, help="The number of channels.")
parser.add_argument(
"--num_cells", type=int, help="The number of cells in one stage."
)
parser.add_argument(
"--track_running_stats",
type=int,
choices=[0, 1],
help="Whether use track_running_stats or not in the BN layer.",
)
parser.add_argument(
"--config_path", type=str, help="The path of the configuration."
)
parser.add_argument(
"--model_config",
type=str,
help="The path of the model configuration. When this arg is set, it will cover max_nodes / channels / num_cells.",
)
# architecture leraning rate
parser.add_argument(
"--arch_learning_rate",
type=float,
default=3e-4,
help="learning rate for arch encoding",
)
parser.add_argument(
"--arch_weight_decay",
type=float,
default=1e-3,
help="weight decay for arch encoding",
)
parser.add_argument("--tau_min", type=float, help="The minimum tau for Gumbel")
parser.add_argument("--tau_max", type=float, help="The maximum tau for Gumbel")
# log
parser.add_argument(
"--workers",
type=int,
default=2,
help="number of data loading workers (default: 2)",
)
parser.add_argument(
"--save_dir", type=str, help="Folder to save checkpoints and log."
)
parser.add_argument(
"--arch_nas_dataset",
type=str,
help="The path to load the architecture dataset (tiny-nas-benchmark).",
)
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
parser.add_argument("--rand_seed", type=int, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
main(args)