xautodl/exps/prepare.py
2019-09-28 18:24:47 +10:00

78 lines
2.9 KiB
Python

# python exps/prepare.py --name cifar10 --root $TORCH_HOME/cifar.python --save ./data/cifar10.split.pth
# python exps/prepare.py --name cifar100 --root $TORCH_HOME/cifar.python --save ./data/cifar100.split.pth
# python exps/prepare.py --name imagenet-1k --root $TORCH_HOME/ILSVRC2012 --save ./data/imagenet-1k.split.pth
import sys, time, torch, random, argparse
from collections import defaultdict
import os.path as osp
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
import torchvision
import torchvision.datasets as dset
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
parser = argparse.ArgumentParser(description='Prepare splits for searching', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--name' , type=str, help='The dataset name.')
parser.add_argument('--root' , type=str, help='The directory to the dataset.')
parser.add_argument('--save' , type=str, help='The save path.')
parser.add_argument('--ratio', type=float, help='The save path.')
args = parser.parse_args()
def main():
save_path = Path(args.save)
save_dir = save_path.parent
name = args.name
save_dir.mkdir(parents=True, exist_ok=True)
assert not save_path.exists(), '{:} already exists'.format(save_path)
print ('torchvision version : {:}'.format(torchvision.__version__))
if name == 'cifar10':
dataset = dset.CIFAR10 (args.root, train=True)
elif name == 'cifar100':
dataset = dset.CIFAR100(args.root, train=True)
elif name == 'imagenet-1k':
dataset = dset.ImageFolder(osp.join(args.root, 'train'))
else: raise TypeError("Unknow dataset : {:}".format(name))
if hasattr(dataset, 'targets'):
targets = dataset.targets
elif hasattr(dataset, 'train_labels'):
targets = dataset.train_labels
elif hasattr(dataset, 'imgs'):
targets = [x[1] for x in dataset.imgs]
else:
raise ValueError('invalid pattern')
print ('There are {:} samples in this dataset.'.format( len(targets) ))
class2index = defaultdict(list)
train, valid = [], []
random.seed(111)
for index, cls in enumerate(targets):
class2index[cls].append( index )
classes = sorted( list(class2index.keys()) )
for cls in classes:
xlist = class2index[cls]
xtrain = random.sample(xlist, int(len(xlist)*args.ratio))
xvalid = list(set(xlist) - set(xtrain))
train += xtrain
valid += xvalid
train.sort()
valid.sort()
## for statistics
class2numT, class2numV = defaultdict(int), defaultdict(int)
for index in train:
class2numT[ targets[index] ] += 1
for index in valid:
class2numV[ targets[index] ] += 1
class2numT, class2numV = dict(class2numT), dict(class2numV)
torch.save({'train': train,
'valid': valid,
'class2numTrain': class2numT,
'class2numValid': class2numV}, save_path)
print ('-'*80)
if __name__ == '__main__':
main()