397 lines
15 KiB
Python
397 lines
15 KiB
Python
#####################################################
|
|
# Learning to Generate Model One Step Ahead #
|
|
#####################################################
|
|
# python exps/GMOA/lfna.py --env_version v1 --workers 0
|
|
# python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.001
|
|
# python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 16 --meta_batch 128
|
|
# python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128
|
|
#####################################################
|
|
import sys, time, copy, torch, random, argparse
|
|
from tqdm import tqdm
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
from torch.nn import functional as F
|
|
|
|
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
|
print("LIB-DIR: {:}".format(lib_dir))
|
|
if str(lib_dir) not in sys.path:
|
|
sys.path.insert(0, str(lib_dir))
|
|
|
|
from xautodl.procedures import (
|
|
prepare_seed,
|
|
prepare_logger,
|
|
save_checkpoint,
|
|
copy_checkpoint,
|
|
)
|
|
from xautodl.log_utils import time_string
|
|
from xautodl.log_utils import AverageMeter, convert_secs2time
|
|
|
|
from xautodl.utils import split_str2indexes
|
|
|
|
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
|
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
|
from xautodl.datasets.synthetic_core import get_synthetic_env
|
|
from xautodl.models.xcore import get_model
|
|
from xautodl.xlayers import super_core, trunc_normal_
|
|
|
|
from lfna_utils import lfna_setup, train_model, TimeData
|
|
from lfna_meta_model import MetaModelV1
|
|
|
|
|
|
def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger):
|
|
base_model.train()
|
|
meta_model.train()
|
|
loss_meter = AverageMeter()
|
|
for ibatch, batch_data in enumerate(loader):
|
|
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
|
|
timestamps = timestamps.squeeze(dim=-1).to(device)
|
|
batch_seq_inputs = batch_seq_inputs.to(device)
|
|
batch_seq_targets = batch_seq_targets.to(device)
|
|
|
|
optimizer.zero_grad()
|
|
|
|
batch_seq_containers = meta_model(timestamps)
|
|
losses = []
|
|
for seq_containers, seq_inputs, seq_targets in zip(
|
|
batch_seq_containers, batch_seq_inputs, batch_seq_targets
|
|
):
|
|
for container, inputs, targets in zip(
|
|
seq_containers, seq_inputs, seq_targets
|
|
):
|
|
predictions = base_model.forward_with_container(inputs, container)
|
|
loss = criterion(predictions, targets)
|
|
losses.append(loss)
|
|
final_loss = torch.stack(losses).mean()
|
|
final_loss.backward()
|
|
optimizer.step()
|
|
loss_meter.update(final_loss.item())
|
|
return loss_meter
|
|
|
|
|
|
def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
|
|
with torch.no_grad():
|
|
base_model.eval()
|
|
meta_model.eval()
|
|
loss_meter = AverageMeter()
|
|
for ibatch, batch_data in enumerate(loader):
|
|
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
|
|
timestamps = timestamps.squeeze(dim=-1).to(device)
|
|
batch_seq_inputs = batch_seq_inputs.to(device)
|
|
batch_seq_targets = batch_seq_targets.to(device)
|
|
|
|
batch_seq_containers = meta_model(timestamps)
|
|
losses = []
|
|
for seq_containers, seq_inputs, seq_targets in zip(
|
|
batch_seq_containers, batch_seq_inputs, batch_seq_targets
|
|
):
|
|
for container, inputs, targets in zip(
|
|
seq_containers, seq_inputs, seq_targets
|
|
):
|
|
predictions = base_model.forward_with_container(inputs, container)
|
|
loss = criterion(predictions, targets)
|
|
losses.append(loss)
|
|
final_loss = torch.stack(losses).mean()
|
|
loss_meter.update(final_loss.item())
|
|
return loss_meter
|
|
|
|
|
|
def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=False):
|
|
logger.log("Online evaluate: {:}".format(env))
|
|
loss_meter = AverageMeter()
|
|
w_containers = dict()
|
|
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
|
with torch.no_grad():
|
|
meta_model.eval()
|
|
base_model.eval()
|
|
_, [future_container], time_embeds = meta_model(
|
|
future_time.to(args.device).view(1, 1), None, False
|
|
)
|
|
if save:
|
|
w_containers[idx] = future_container.no_grad_clone()
|
|
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
|
future_y_hat = base_model.forward_with_container(future_x, future_container)
|
|
future_loss = criterion(future_y_hat, future_y)
|
|
loss_meter.update(future_loss.item())
|
|
refine, post_refine_loss = meta_model.adapt(
|
|
base_model,
|
|
criterion,
|
|
future_time.item(),
|
|
future_x,
|
|
future_y,
|
|
args.refine_lr,
|
|
args.refine_epochs,
|
|
{"param": time_embeds, "loss": future_loss.item()},
|
|
)
|
|
logger.log(
|
|
"[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format(
|
|
idx, len(env), future_loss.item()
|
|
)
|
|
+ ", post-loss={:.4f}".format(post_refine_loss if refine else -1)
|
|
)
|
|
meta_model.clear_fixed()
|
|
meta_model.clear_learnt()
|
|
return w_containers, loss_meter
|
|
|
|
|
|
def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
|
|
base_model.train()
|
|
meta_model.train()
|
|
optimizer = torch.optim.Adam(
|
|
meta_model.get_parameters(True, True, True),
|
|
lr=args.lr,
|
|
weight_decay=args.weight_decay,
|
|
amsgrad=True,
|
|
)
|
|
logger.log("Pre-train the meta-model")
|
|
logger.log("Using the optimizer: {:}".format(optimizer))
|
|
|
|
meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2")
|
|
final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed)
|
|
if meta_model.has_best(final_best_name):
|
|
meta_model.load_best(final_best_name)
|
|
logger.log("Directly load the best model from {:}".format(final_best_name))
|
|
return
|
|
|
|
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
|
|
last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh
|
|
per_epoch_time, start_time = AverageMeter(), time.time()
|
|
device = args.device
|
|
for iepoch in range(args.epochs):
|
|
left_time = "Time Left: {:}".format(
|
|
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
|
)
|
|
total_future_losses, total_present_losses, total_regu_losses = [], [], []
|
|
optimizer.zero_grad()
|
|
for ibatch in range(args.meta_batch):
|
|
rand_index = random.randint(0, meta_model.meta_length - 1)
|
|
timestamp = meta_model.meta_timestamps[rand_index]
|
|
|
|
_, [container], time_embed = meta_model(
|
|
torch.unsqueeze(timestamp, dim=0), None, False
|
|
)
|
|
_, (inputs, targets) = xenv(timestamp.item())
|
|
inputs, targets = inputs.to(device), targets.to(device)
|
|
# generate models one step ahead
|
|
predictions = base_model.forward_with_container(inputs, container)
|
|
total_future_losses.append(criterion(predictions, targets))
|
|
# randomly sample
|
|
rand_index = random.randint(0, meta_model.meta_length - 1)
|
|
timestamp = meta_model.meta_timestamps[rand_index]
|
|
meta_embed = meta_model.super_meta_embed[rand_index]
|
|
|
|
time_embed = meta_model(torch.unsqueeze(timestamp, dim=0), None, True)
|
|
total_regu_losses.append(
|
|
F.mse_loss(
|
|
torch.squeeze(time_embed, dim=0), meta_embed, reduction="mean"
|
|
)
|
|
)
|
|
# generate models via memory
|
|
_, [container], _ = meta_model(None, meta_embed.view(1, 1, -1), False)
|
|
predictions = base_model.forward_with_container(inputs, container)
|
|
total_present_losses.append(criterion(predictions, targets))
|
|
with torch.no_grad():
|
|
meta_std = torch.stack(total_future_losses).std().item()
|
|
loss_future = torch.stack(total_future_losses).mean()
|
|
loss_present = torch.stack(total_present_losses).mean()
|
|
regularization_loss = torch.stack(total_regu_losses).mean()
|
|
total_loss = loss_future + loss_present + regularization_loss
|
|
total_loss.backward()
|
|
optimizer.step()
|
|
# success
|
|
success, best_score = meta_model.save_best(-total_loss.item())
|
|
logger.log(
|
|
"{:} [Pre-V2 {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format(
|
|
time_string(),
|
|
iepoch,
|
|
args.epochs,
|
|
total_loss.item(),
|
|
meta_std,
|
|
loss_future.item(),
|
|
loss_present.item(),
|
|
regularization_loss.item(),
|
|
)
|
|
+ ", batch={:}".format(len(total_future_losses))
|
|
+ ", success={:}, best={:.4f}".format(success, -best_score)
|
|
+ ", LS={:}/{:}".format(iepoch - last_success_epoch, early_stop_thresh)
|
|
+ ", {:}".format(left_time)
|
|
)
|
|
if success:
|
|
last_success_epoch = iepoch
|
|
if iepoch - last_success_epoch >= early_stop_thresh:
|
|
logger.log("Early stop the pre-training at {:}".format(iepoch))
|
|
break
|
|
per_epoch_time.update(time.time() - start_time)
|
|
start_time = time.time()
|
|
meta_model.load_best()
|
|
# save to the final model
|
|
meta_model.set_best_name(final_best_name)
|
|
success, _ = meta_model.save_best(best_score + 1e-6)
|
|
assert success
|
|
logger.log("Save the best model into {:}".format(final_best_name))
|
|
|
|
|
|
def main(args):
|
|
logger, model_kwargs = lfna_setup(args)
|
|
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
|
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
|
|
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
|
|
all_env = get_synthetic_env(mode=None, version=args.env_version)
|
|
logger.log("The training enviornment: {:}".format(train_env))
|
|
logger.log("The validation enviornment: {:}".format(valid_env))
|
|
logger.log("The trainval enviornment: {:}".format(trainval_env))
|
|
logger.log("The total enviornment: {:}".format(all_env))
|
|
|
|
base_model = get_model(**model_kwargs)
|
|
base_model = base_model.to(args.device)
|
|
criterion = torch.nn.MSELoss()
|
|
|
|
shape_container = base_model.get_w_container().to_shape_container()
|
|
|
|
# pre-train the hypernetwork
|
|
timestamps = trainval_env.get_timestamp(None)
|
|
meta_model = MetaModelV1(
|
|
shape_container,
|
|
args.layer_dim,
|
|
args.time_dim,
|
|
timestamps,
|
|
seq_length=args.seq_length,
|
|
interval=trainval_env.time_interval,
|
|
)
|
|
meta_model = meta_model.to(args.device)
|
|
|
|
logger.log("The base-model has {:} weights.".format(base_model.numel()))
|
|
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
|
|
logger.log("The base-model is\n{:}".format(base_model))
|
|
logger.log("The meta-model is\n{:}".format(meta_model))
|
|
|
|
pretrain_v2(base_model, meta_model, criterion, trainval_env, args, logger)
|
|
|
|
# try to evaluate once
|
|
# online_evaluate(train_env, meta_model, base_model, criterion, args, logger)
|
|
# online_evaluate(valid_env, meta_model, base_model, criterion, args, logger)
|
|
w_containers, loss_meter = online_evaluate(
|
|
all_env, meta_model, base_model, criterion, args, logger, True
|
|
)
|
|
logger.log("In this enviornment, the loss-meter is {:}".format(loss_meter))
|
|
|
|
save_checkpoint(
|
|
{"w_containers": w_containers},
|
|
logger.path(None) / "final-ckp.pth",
|
|
logger,
|
|
)
|
|
|
|
logger.log("-" * 200 + "\n")
|
|
logger.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(".")
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="./outputs/lfna-synthetic/lfna-battle",
|
|
help="The checkpoint directory.",
|
|
)
|
|
parser.add_argument(
|
|
"--env_version",
|
|
type=str,
|
|
required=True,
|
|
help="The synthetic enviornment version.",
|
|
)
|
|
parser.add_argument(
|
|
"--hidden_dim",
|
|
type=int,
|
|
default=16,
|
|
help="The hidden dimension.",
|
|
)
|
|
parser.add_argument(
|
|
"--layer_dim",
|
|
type=int,
|
|
default=16,
|
|
help="The layer chunk dimension.",
|
|
)
|
|
parser.add_argument(
|
|
"--time_dim",
|
|
type=int,
|
|
default=16,
|
|
help="The timestamp dimension.",
|
|
)
|
|
#####
|
|
parser.add_argument(
|
|
"--lr",
|
|
type=float,
|
|
default=0.002,
|
|
help="The initial learning rate for the optimizer (default is Adam)",
|
|
)
|
|
parser.add_argument(
|
|
"--weight_decay",
|
|
type=float,
|
|
default=0.00001,
|
|
help="The weight decay for the optimizer (default is Adam)",
|
|
)
|
|
parser.add_argument(
|
|
"--meta_batch",
|
|
type=int,
|
|
default=64,
|
|
help="The batch size for the meta-model",
|
|
)
|
|
parser.add_argument(
|
|
"--sampler_enlarge",
|
|
type=int,
|
|
default=5,
|
|
help="Enlarge the #iterations for an epoch",
|
|
)
|
|
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
|
|
parser.add_argument(
|
|
"--refine_lr",
|
|
type=float,
|
|
default=0.001,
|
|
help="The learning rate for the optimizer, during refine",
|
|
)
|
|
parser.add_argument(
|
|
"--refine_epochs", type=int, default=150, help="The final refine #epochs."
|
|
)
|
|
parser.add_argument(
|
|
"--early_stop_thresh",
|
|
type=int,
|
|
default=20,
|
|
help="The #epochs for early stop.",
|
|
)
|
|
parser.add_argument(
|
|
"--pretrain_early_stop_thresh",
|
|
type=int,
|
|
default=300,
|
|
help="The #epochs for early stop.",
|
|
)
|
|
parser.add_argument(
|
|
"--seq_length", type=int, default=10, help="The sequence length."
|
|
)
|
|
parser.add_argument(
|
|
"--workers", type=int, default=4, help="The number of workers in parallel."
|
|
)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cpu",
|
|
help="",
|
|
)
|
|
# Random Seed
|
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
|
args = parser.parse_args()
|
|
if args.rand_seed is None or args.rand_seed < 0:
|
|
args.rand_seed = random.randint(1, 100000)
|
|
assert args.save_dir is not None, "The save dir argument can not be None"
|
|
args.save_dir = "{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format(
|
|
args.save_dir,
|
|
args.meta_batch,
|
|
args.hidden_dim,
|
|
args.layer_dim,
|
|
args.time_dim,
|
|
args.seq_length,
|
|
args.lr,
|
|
args.weight_decay,
|
|
args.epochs,
|
|
args.env_version,
|
|
)
|
|
main(args)
|