412 lines
17 KiB
Python
412 lines
17 KiB
Python
|
from rdkit import Chem, RDLogger
|
||
|
RDLogger.DisableLog('rdApp.*')
|
||
|
from fcd_torch import FCD as FCDMetric
|
||
|
from mini_moses.metrics.metrics import FragMetric, internal_diversity
|
||
|
from mini_moses.metrics.utils import get_mol, mapper
|
||
|
|
||
|
import re
|
||
|
import time
|
||
|
import random
|
||
|
random.seed(0)
|
||
|
import numpy as np
|
||
|
from multiprocessing import Pool
|
||
|
|
||
|
import torch
|
||
|
from metrics.property_metric import calculateSAS
|
||
|
|
||
|
bond_dict = [None, Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE,
|
||
|
Chem.rdchem.BondType.AROMATIC]
|
||
|
ATOM_VALENCY = {6: 4, 7: 3, 8: 2, 9: 1, 15: 3, 16: 2, 17: 1, 35: 1, 53: 1}
|
||
|
|
||
|
bd_dict_x = {'O2-N2': [5.00E+04, 1.00E-03]}
|
||
|
bd_dict_y = {'O2-N2': [5.00E+04/2.78E+04, 1.00E-03/2.43E-05]}
|
||
|
|
||
|
selectivity = ['O2-N2']
|
||
|
a_dict = {}
|
||
|
b_dict = {}
|
||
|
for prop_name in selectivity:
|
||
|
x1, x2 = np.log10(bd_dict_x[prop_name][0]), np.log10(bd_dict_x[prop_name][1])
|
||
|
y1, y2 = np.log10(bd_dict_y[prop_name][0]), np.log10(bd_dict_y[prop_name][1])
|
||
|
a = (y1-y2)/(x1-x2)
|
||
|
b = y1-a*x1
|
||
|
a_dict[prop_name] = a
|
||
|
b_dict[prop_name] = b
|
||
|
|
||
|
def selectivity_evaluation(gas1, gas2, prop_name):
|
||
|
x = np.log10(np.array(gas1))
|
||
|
y = np.log10(np.array(gas1) / np.array(gas2))
|
||
|
upper = (y - (a_dict[prop_name] * x + b_dict[prop_name])) > 0
|
||
|
return upper
|
||
|
|
||
|
class BasicMolecularMetrics(object):
|
||
|
def __init__(self, atom_decoder, train_smiles=None, stat_ref=None, task_evaluator=None, n_jobs=8, device='cpu', batch_size=512):
|
||
|
self.dataset_smiles_list = train_smiles
|
||
|
self.atom_decoder = atom_decoder
|
||
|
self.n_jobs = n_jobs
|
||
|
self.device = device
|
||
|
self.batch_size = batch_size
|
||
|
self.stat_ref = stat_ref
|
||
|
self.task_evaluator = task_evaluator
|
||
|
|
||
|
def compute_relaxed_validity(self, generated, ensure_connected):
|
||
|
valid = []
|
||
|
num_components = []
|
||
|
all_smiles = []
|
||
|
valid_mols = []
|
||
|
covered_atoms = set()
|
||
|
direct_valid_count = 0
|
||
|
for graph in generated:
|
||
|
atom_types, edge_types = graph
|
||
|
mol = build_molecule_with_partial_charges(atom_types, edge_types, self.atom_decoder)
|
||
|
direct_valid_flag = True if check_mol(mol, largest_connected_comp=True) is not None else False
|
||
|
if direct_valid_flag:
|
||
|
direct_valid_count += 1
|
||
|
if not ensure_connected:
|
||
|
mol_conn, _ = correct_mol(mol, connection=True)
|
||
|
mol = mol_conn if mol_conn is not None else correct_mol(mol, connection=False)[0]
|
||
|
else: # ensure fully connected
|
||
|
mol, _ = correct_mol(mol, connection=True)
|
||
|
smiles = mol2smiles(mol)
|
||
|
mol = get_mol(smiles)
|
||
|
try:
|
||
|
mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True, sanitizeFrags=True)
|
||
|
num_components.append(len(mol_frags))
|
||
|
largest_mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
|
||
|
smiles = mol2smiles(largest_mol)
|
||
|
if smiles is not None and largest_mol is not None and len(smiles) > 1 and Chem.MolFromSmiles(smiles) is not None:
|
||
|
valid_mols.append(largest_mol)
|
||
|
valid.append(smiles)
|
||
|
for atom in largest_mol.GetAtoms():
|
||
|
covered_atoms.add(atom.GetSymbol())
|
||
|
all_smiles.append(smiles)
|
||
|
else:
|
||
|
all_smiles.append(None)
|
||
|
except Exception as e:
|
||
|
# print(f"An error occurred: {e}")
|
||
|
all_smiles.append(None)
|
||
|
|
||
|
return valid, len(valid) / len(generated), direct_valid_count / len(generated), np.array(num_components), all_smiles, covered_atoms
|
||
|
|
||
|
def evaluate(self, generated, targets, ensure_connected, active_atoms=None):
|
||
|
""" generated: list of pairs (positions: n x 3, atom_types: n [int])
|
||
|
the positions and atom types should already be masked. """
|
||
|
valid, validity, nc_validity, num_components, all_smiles, covered_atoms = self.compute_relaxed_validity(generated, ensure_connected=ensure_connected)
|
||
|
nc_mu = num_components.mean() if len(num_components) > 0 else 0
|
||
|
nc_min = num_components.min() if len(num_components) > 0 else 0
|
||
|
nc_max = num_components.max() if len(num_components) > 0 else 0
|
||
|
|
||
|
len_active = len(active_atoms) if active_atoms is not None else 1
|
||
|
|
||
|
cover_str = f"Cover {len(covered_atoms)} ({len(covered_atoms)/len_active * 100:.2f}%) atoms: {covered_atoms}"
|
||
|
print(f"Validity over {len(generated)} molecules: {validity * 100 :.2f}% (w/o correction: {nc_validity * 100 :.2f}%), cover {len(covered_atoms)} ({len(covered_atoms)/len_active * 100:.2f}%) atoms: {covered_atoms}")
|
||
|
print(f"Number of connected components of {len(generated)} molecules: min:{nc_min:.2f} mean:{nc_mu:.2f} max:{nc_max:.2f}")
|
||
|
|
||
|
if validity > 0:
|
||
|
dist_metrics = {'cover_str': cover_str ,'validity': validity, 'validity_nc': nc_validity}
|
||
|
unique = list(set(valid))
|
||
|
close_pool = False
|
||
|
if self.n_jobs != 1:
|
||
|
pool = Pool(self.n_jobs)
|
||
|
close_pool = True
|
||
|
else:
|
||
|
pool = 1
|
||
|
valid_mols = mapper(pool)(get_mol, valid)
|
||
|
dist_metrics['interval_diversity'] = internal_diversity(valid_mols, pool, device=self.device)
|
||
|
|
||
|
start_time = time.time()
|
||
|
if self.stat_ref is not None:
|
||
|
kwargs = {'n_jobs': pool, 'device': self.device, 'batch_size': self.batch_size}
|
||
|
kwargs_fcd = {'n_jobs': self.n_jobs, 'device': self.device, 'batch_size': self.batch_size}
|
||
|
try:
|
||
|
dist_metrics['sim/Frag'] = FragMetric(**kwargs)(gen=valid_mols, pref=self.stat_ref['Frag'])
|
||
|
except:
|
||
|
print('error: ', 'pool', pool)
|
||
|
print('valid_mols: ', valid_mols)
|
||
|
dist_metrics['dist/FCD'] = FCDMetric(**kwargs_fcd)(gen=valid, pref=self.stat_ref['FCD'])
|
||
|
|
||
|
if self.task_evaluator is not None:
|
||
|
evaluation_list = list(self.task_evaluator.keys())
|
||
|
evaluation_list = evaluation_list.copy()
|
||
|
|
||
|
assert 'meta_taskname' in evaluation_list
|
||
|
meta_taskname = self.task_evaluator['meta_taskname']
|
||
|
evaluation_list.remove('meta_taskname')
|
||
|
meta_split = meta_taskname.split('-')
|
||
|
|
||
|
valid_index = np.array([True if smiles else False for smiles in all_smiles])
|
||
|
targets_log = {}
|
||
|
for i, name in enumerate(evaluation_list):
|
||
|
targets_log[f'input_{name}'] = np.array([float('nan')] * len(valid_index))
|
||
|
targets_log[f'input_{name}'] = targets[:, i]
|
||
|
|
||
|
targets = targets[valid_index]
|
||
|
if len(meta_split) == 2:
|
||
|
cached_perm = {meta_split[0]: None, meta_split[1]: None}
|
||
|
|
||
|
for i, name in enumerate(evaluation_list):
|
||
|
if name == 'scs':
|
||
|
continue
|
||
|
elif name == 'sas':
|
||
|
scores = calculateSAS(valid)
|
||
|
else:
|
||
|
scores = self.task_evaluator[name](valid)
|
||
|
targets_log[f'output_{name}'] = np.array([float('nan')] * len(valid_index))
|
||
|
targets_log[f'output_{name}'][valid_index] = scores
|
||
|
if name in ['O2', 'N2', 'CO2']:
|
||
|
if len(meta_split) == 2:
|
||
|
cached_perm[name] = scores
|
||
|
scores, cur_targets = np.log10(scores), np.log10(targets[:, i])
|
||
|
dist_metrics[f'{name}/mae'] = np.mean(np.abs(scores - cur_targets))
|
||
|
elif name == 'sas':
|
||
|
dist_metrics[f'{name}/mae'] = np.mean(np.abs(scores - targets[:, i]))
|
||
|
else:
|
||
|
true_y = targets[:, i]
|
||
|
predicted_labels = (scores >= 0.5).astype(int)
|
||
|
acc = (predicted_labels == true_y).sum() / len(true_y)
|
||
|
dist_metrics[f'{name}/acc'] = acc
|
||
|
|
||
|
if len(meta_split) == 2:
|
||
|
if cached_perm[meta_split[0]] is not None and cached_perm[meta_split[1]] is not None:
|
||
|
task_name = self.task_evaluator['meta_taskname']
|
||
|
upper = selectivity_evaluation(cached_perm[meta_split[0]], cached_perm[meta_split[1]], task_name)
|
||
|
dist_metrics[f'selectivity/{task_name}'] = np.sum(upper)
|
||
|
|
||
|
end_time = time.time()
|
||
|
elapsed_time = end_time - start_time
|
||
|
max_key_length = max(len(key) for key in dist_metrics)
|
||
|
print(f'Details over {len(valid)} ({len(generated)}) valid (total) molecules, calculating metrics using {elapsed_time:.2f} s:')
|
||
|
strs = ''
|
||
|
for i, (key, value) in enumerate(dist_metrics.items()):
|
||
|
if isinstance(value, (int, float, np.floating, np.integer)):
|
||
|
strs = strs + f'{key:>{max_key_length}}:{value:<7.4f}\t'
|
||
|
if i % 4 == 3:
|
||
|
strs = strs + '\n'
|
||
|
print(strs)
|
||
|
|
||
|
if close_pool:
|
||
|
pool.close()
|
||
|
pool.join()
|
||
|
else:
|
||
|
unique = []
|
||
|
dist_metrics = {}
|
||
|
targets_log = None
|
||
|
return unique, dict(nc_min=nc_min, nc_max=nc_max, nc_mu=nc_mu), all_smiles, dist_metrics, targets_log
|
||
|
|
||
|
def mol2smiles(mol):
|
||
|
if mol is None:
|
||
|
return None
|
||
|
try:
|
||
|
Chem.SanitizeMol(mol)
|
||
|
except ValueError:
|
||
|
return None
|
||
|
return Chem.MolToSmiles(mol)
|
||
|
|
||
|
def build_molecule_with_partial_charges(atom_types, edge_types, atom_decoder, verbose=False):
|
||
|
if verbose:
|
||
|
print("\nbuilding new molecule")
|
||
|
|
||
|
mol = Chem.RWMol()
|
||
|
for atom in atom_types:
|
||
|
a = Chem.Atom(atom_decoder[atom.item()])
|
||
|
mol.AddAtom(a)
|
||
|
if verbose:
|
||
|
print("Atom added: ", atom.item(), atom_decoder[atom.item()])
|
||
|
|
||
|
edge_types = torch.triu(edge_types)
|
||
|
all_bonds = torch.nonzero(edge_types)
|
||
|
|
||
|
for i, bond in enumerate(all_bonds):
|
||
|
if bond[0].item() != bond[1].item():
|
||
|
mol.AddBond(bond[0].item(), bond[1].item(), bond_dict[edge_types[bond[0], bond[1]].item()])
|
||
|
if verbose:
|
||
|
print("bond added:", bond[0].item(), bond[1].item(), edge_types[bond[0], bond[1]].item(),
|
||
|
bond_dict[edge_types[bond[0], bond[1]].item()])
|
||
|
# add formal charge to atom: e.g. [O+], [N+], [S+]
|
||
|
# not support [O-], [N-], [S-], [NH+] etc.
|
||
|
flag, atomid_valence = check_valency(mol)
|
||
|
if verbose:
|
||
|
print("flag, valence", flag, atomid_valence)
|
||
|
if flag:
|
||
|
continue
|
||
|
else:
|
||
|
if len(atomid_valence) == 2:
|
||
|
idx = atomid_valence[0]
|
||
|
v = atomid_valence[1]
|
||
|
an = mol.GetAtomWithIdx(idx).GetAtomicNum()
|
||
|
if verbose:
|
||
|
print("atomic num of atom with a large valence", an)
|
||
|
if an in (7, 8, 16) and (v - ATOM_VALENCY[an]) == 1:
|
||
|
mol.GetAtomWithIdx(idx).SetFormalCharge(1)
|
||
|
# print("Formal charge added")
|
||
|
else:
|
||
|
continue
|
||
|
return mol
|
||
|
|
||
|
def check_valency(mol):
|
||
|
try:
|
||
|
Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES)
|
||
|
return True, None
|
||
|
except ValueError as e:
|
||
|
e = str(e)
|
||
|
p = e.find('#')
|
||
|
e_sub = e[p:]
|
||
|
atomid_valence = list(map(int, re.findall(r'\d+', e_sub)))
|
||
|
return False, atomid_valence
|
||
|
|
||
|
|
||
|
def correct_mol(mol, connection=False):
|
||
|
#####
|
||
|
no_correct = False
|
||
|
flag, _ = check_valency(mol)
|
||
|
if flag:
|
||
|
no_correct = True
|
||
|
|
||
|
while True:
|
||
|
if connection:
|
||
|
mol_conn = connect_fragments(mol)
|
||
|
# if mol_conn is not None:
|
||
|
mol = mol_conn
|
||
|
if mol is None:
|
||
|
return None, no_correct
|
||
|
flag, atomid_valence = check_valency(mol)
|
||
|
if flag:
|
||
|
break
|
||
|
else:
|
||
|
try:
|
||
|
assert len(atomid_valence) == 2
|
||
|
idx = atomid_valence[0]
|
||
|
v = atomid_valence[1]
|
||
|
queue = []
|
||
|
check_idx = 0
|
||
|
for b in mol.GetAtomWithIdx(idx).GetBonds():
|
||
|
type = int(b.GetBondType())
|
||
|
queue.append((b.GetIdx(), type, b.GetBeginAtomIdx(), b.GetEndAtomIdx()))
|
||
|
if type == 12:
|
||
|
check_idx += 1
|
||
|
queue.sort(key=lambda tup: tup[1], reverse=True)
|
||
|
|
||
|
if queue[-1][1] == 12:
|
||
|
return None, no_correct
|
||
|
elif len(queue) > 0:
|
||
|
start = queue[check_idx][2]
|
||
|
end = queue[check_idx][3]
|
||
|
t = queue[check_idx][1] - 1
|
||
|
mol.RemoveBond(start, end)
|
||
|
if t >= 1:
|
||
|
mol.AddBond(start, end, bond_dict[t])
|
||
|
except Exception as e:
|
||
|
# print(f"An error occurred in correction: {e}")
|
||
|
return None, no_correct
|
||
|
return mol, no_correct
|
||
|
|
||
|
|
||
|
def check_mol(m, largest_connected_comp=True):
|
||
|
if m is None:
|
||
|
return None
|
||
|
sm = Chem.MolToSmiles(m, isomericSmiles=True)
|
||
|
if largest_connected_comp and '.' in sm:
|
||
|
vsm = [(s, len(s)) for s in sm.split('.')] # 'C.CC.CCc1ccc(N)cc1CCC=O'.split('.')
|
||
|
vsm.sort(key=lambda tup: tup[1], reverse=True)
|
||
|
mol = Chem.MolFromSmiles(vsm[0][0])
|
||
|
else:
|
||
|
mol = Chem.MolFromSmiles(sm)
|
||
|
return mol
|
||
|
|
||
|
|
||
|
##### connect fragements
|
||
|
def select_atom_with_available_valency(frag):
|
||
|
atoms = list(frag.GetAtoms())
|
||
|
random.shuffle(atoms)
|
||
|
for atom in atoms:
|
||
|
if atom.GetAtomicNum() > 1 and atom.GetImplicitValence() > 0:
|
||
|
return atom
|
||
|
|
||
|
return None
|
||
|
|
||
|
def select_atoms_with_available_valency(frag):
|
||
|
return [atom for atom in frag.GetAtoms() if atom.GetAtomicNum() > 1 and atom.GetImplicitValence() > 0]
|
||
|
|
||
|
def try_to_connect_fragments(combined_mol, frag, atom1, atom2):
|
||
|
# Make copies of the molecules to try the connection
|
||
|
trial_combined_mol = Chem.RWMol(combined_mol)
|
||
|
trial_frag = Chem.RWMol(frag)
|
||
|
|
||
|
# Add the new fragment to the combined molecule with new indices
|
||
|
new_indices = {atom.GetIdx(): trial_combined_mol.AddAtom(atom) for atom in trial_frag.GetAtoms()}
|
||
|
|
||
|
# Add the bond between the suitable atoms from each fragment
|
||
|
trial_combined_mol.AddBond(atom1.GetIdx(), new_indices[atom2.GetIdx()], Chem.BondType.SINGLE)
|
||
|
|
||
|
# Adjust the hydrogen count of the connected atoms
|
||
|
for atom_idx in [atom1.GetIdx(), new_indices[atom2.GetIdx()]]:
|
||
|
atom = trial_combined_mol.GetAtomWithIdx(atom_idx)
|
||
|
num_h = atom.GetTotalNumHs()
|
||
|
atom.SetNumExplicitHs(max(0, num_h - 1))
|
||
|
|
||
|
# Add bonds for the new fragment
|
||
|
for bond in trial_frag.GetBonds():
|
||
|
trial_combined_mol.AddBond(new_indices[bond.GetBeginAtomIdx()], new_indices[bond.GetEndAtomIdx()], bond.GetBondType())
|
||
|
|
||
|
# Convert to a Mol object and try to sanitize it
|
||
|
new_mol = Chem.Mol(trial_combined_mol)
|
||
|
try:
|
||
|
Chem.SanitizeMol(new_mol)
|
||
|
return new_mol # Return the new valid molecule
|
||
|
except Chem.MolSanitizeException:
|
||
|
return None # If the molecule is not valid, return None
|
||
|
|
||
|
def connect_fragments(mol):
|
||
|
# Get the separate fragments
|
||
|
frags = Chem.GetMolFrags(mol, asMols=True, sanitizeFrags=False)
|
||
|
if len(frags) < 2:
|
||
|
return mol
|
||
|
|
||
|
combined_mol = Chem.RWMol(frags[0])
|
||
|
|
||
|
for frag in frags[1:]:
|
||
|
# Select all atoms with available valency from both molecules
|
||
|
atoms1 = select_atoms_with_available_valency(combined_mol)
|
||
|
atoms2 = select_atoms_with_available_valency(frag)
|
||
|
|
||
|
# Try to connect using all combinations of available valency atoms
|
||
|
for atom1 in atoms1:
|
||
|
for atom2 in atoms2:
|
||
|
new_mol = try_to_connect_fragments(combined_mol, frag, atom1, atom2)
|
||
|
if new_mol is not None:
|
||
|
# If a valid connection is made, update the combined molecule and break
|
||
|
combined_mol = new_mol
|
||
|
break
|
||
|
else:
|
||
|
# Continue if the inner loop didn't break (no valid connection found for atom1)
|
||
|
continue
|
||
|
# Break if the inner loop did break (valid connection found)
|
||
|
break
|
||
|
else:
|
||
|
# If no valid connections could be made with any of the atoms, return None
|
||
|
return None
|
||
|
|
||
|
return combined_mol
|
||
|
|
||
|
#### connect fragements
|
||
|
|
||
|
def compute_molecular_metrics(molecule_list, targets, train_smiles, stat_ref, dataset_info, task_evaluator, comput_config):
|
||
|
""" molecule_list: (dict) """
|
||
|
|
||
|
atom_decoder = dataset_info.atom_decoder
|
||
|
active_atoms = dataset_info.active_atoms
|
||
|
ensure_connected = dataset_info.ensure_connected
|
||
|
metrics = BasicMolecularMetrics(atom_decoder, train_smiles, stat_ref, task_evaluator, **comput_config)
|
||
|
evaluated_res = metrics.evaluate(molecule_list, targets, ensure_connected, active_atoms)
|
||
|
all_smiles = evaluated_res[-3]
|
||
|
all_metrics = evaluated_res[-2]
|
||
|
targets_log = evaluated_res[-1]
|
||
|
unique_smiles = evaluated_res[0]
|
||
|
|
||
|
return unique_smiles, all_smiles, all_metrics, targets_log
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
smiles_mol = 'C1CCC1'
|
||
|
print("Smiles mol %s" % smiles_mol)
|
||
|
chem_mol = Chem.MolFromSmiles(smiles_mol)
|
||
|
print(block_mol)
|