need to update the model
This commit is contained in:
parent
0c60171c71
commit
2ac17caa3c
@ -239,8 +239,8 @@ class Graph_DiT(pl.LightningModule):
|
||||
|
||||
self.val_X_logp.compute(), self.val_E_logp.compute()]
|
||||
|
||||
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
|
||||
print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ",
|
||||
# if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
|
||||
print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ",
|
||||
f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best : %.2f\n' % (metrics[0], self.best_val_nll))
|
||||
with open("validation-metrics.csv", "a") as f:
|
||||
# save the metrics as csv file
|
||||
|
@ -242,6 +242,12 @@ def test(cfg: DictConfig):
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
# return {'loss': loss}
|
||||
if epoch % cfg.train.check_val_every_n_epoch == 0:
|
||||
print(f'print validation loss')
|
||||
graph_dit_model.eval()
|
||||
graph_dit_model.on_validation_epoch_start()
|
||||
graph_dit_model.validation_step(data, epoch)
|
||||
graph_dit_model.on_validation_epoch_end()
|
||||
|
||||
# start testing
|
||||
print("start testing")
|
||||
@ -281,6 +287,53 @@ def test(cfg: DictConfig):
|
||||
reward = 1.0
|
||||
rewards.append(reward)
|
||||
return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device)
|
||||
# while samples_left_to_generate > 0:
|
||||
# print(f'samples left to generate: {samples_left_to_generate}/'
|
||||
# f'{cfg.general.final_model_samples_to_generate}', end='', flush=True)
|
||||
# bs = 1 * cfg.train.batch_size
|
||||
# to_generate = min(samples_left_to_generate, bs)
|
||||
# to_save = min(samples_left_to_save, bs)
|
||||
# chains_save = min(chains_left_to_save, bs)
|
||||
# # batch_y = test_y_collection[batch_id : batch_id + to_generate]
|
||||
# batch_y = torch.ones(to_generate, graph_dit_model.ydim_output, device=graph_dit_model.device)
|
||||
|
||||
# cur_sample, log_probs = graph_dit_model.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
|
||||
# keep_chain=chains_save, number_chain_steps=graph_dit_model.number_chain_steps)
|
||||
# samples = samples + cur_sample
|
||||
# reward = graph_reward_fn(cur_sample, device=graph_dit_model.device)
|
||||
|
||||
# samples_with_log_probs.append((cur_sample, log_probs, reward))
|
||||
|
||||
# all_ys.append(batch_y)
|
||||
# batch_id += to_generate
|
||||
|
||||
# samples_left_to_save -= to_save
|
||||
# samples_left_to_generate -= to_generate
|
||||
# chains_left_to_save -= chains_save
|
||||
|
||||
# print(f"final Computing sampling metrics...")
|
||||
# graph_dit_model.sampling_metrics.reset()
|
||||
# graph_dit_model.sampling_metrics(samples, all_ys, graph_dit_model.name, graph_dit_model.current_epoch, graph_dit_model.val_counter, test=True)
|
||||
# graph_dit_model.sampling_metrics.reset()
|
||||
# print(f"Done.")
|
||||
|
||||
# # save samples
|
||||
# print("Samples:")
|
||||
# print(samples)
|
||||
|
||||
# perm = torch.randperm(len(samples_with_log_probs), device=accelerator.device)
|
||||
# samples, log_probs, rewards = samples_with_log_probs[perm]
|
||||
# samples = list(samples)
|
||||
# log_probs = list(log_probs)
|
||||
# for i in range(len(log_probs)):
|
||||
# log_probs[i] = torch.sum(log_probs[i], dim=-1).unsqueeze(0)
|
||||
# print(f'log_probs: {log_probs[:5]}')
|
||||
# print(f'log_probs: {log_probs[0].shape}') # torch.Size([1])
|
||||
# rewards = list(rewards)
|
||||
# log_probs = torch.cat(log_probs, dim=0)
|
||||
# print(f'log_probs: {log_probs.shape}') # torch.Size([1000, 1])
|
||||
# old_log_probs = log_probs.clone()
|
||||
old_log_probs = None
|
||||
while samples_left_to_generate > 0:
|
||||
print(f'samples left to generate: {samples_left_to_generate}/'
|
||||
f'{cfg.general.final_model_samples_to_generate}', end='', flush=True)
|
||||
@ -289,14 +342,34 @@ def test(cfg: DictConfig):
|
||||
to_save = min(samples_left_to_save, bs)
|
||||
chains_save = min(chains_left_to_save, bs)
|
||||
# batch_y = test_y_collection[batch_id : batch_id + to_generate]
|
||||
batch_y = torch.ones(to_generate, graph_dit_model.ydim_output, device=graph_dit_model.device)
|
||||
|
||||
cur_sample, log_probs = graph_dit_model.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
|
||||
keep_chain=chains_save, number_chain_steps=graph_dit_model.number_chain_steps)
|
||||
samples = samples + cur_sample
|
||||
reward = graph_reward_fn(cur_sample, device=graph_dit_model.device)
|
||||
# batch_y = torch.ones(to_generate, graph_dit_model.ydim_output, device=graph_dit_model.device)
|
||||
|
||||
samples_with_log_probs.append((cur_sample, log_probs, reward))
|
||||
# cur_sample, old_log_probs = graph_dit_model.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
|
||||
# keep_chain=chains_save, number_chain_steps=graph_dit_model.number_chain_steps)
|
||||
# samples = samples + cur_sample
|
||||
# reward = graph_reward_fn(cur_sample, device=graph_dit_model.device)
|
||||
# advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6)
|
||||
with accelerator.accumulate(graph_dit_model):
|
||||
batch_y = torch.ones(to_generate, graph_dit_model.ydim_output, device=graph_dit_model.device)
|
||||
new_samples, log_probs = graph_dit_model.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,keep_chain=chains_save, number_chain_steps=graph_dit_model.number_chain_steps)
|
||||
samples = samples + new_samples
|
||||
reward = graph_reward_fn(new_samples, device=graph_dit_model.device)
|
||||
advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6)
|
||||
if old_log_probs is None:
|
||||
old_log_probs = log_probs.clone()
|
||||
ratio = torch.exp(log_probs - old_log_probs)
|
||||
unclipped_loss = -advantages * ratio
|
||||
clipped_loss = -advantages * torch.clamp(ratio,
|
||||
1.0 - cfg.ppo.clip_param,
|
||||
1.0 + cfg.ppo.clip_param)
|
||||
loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
|
||||
samples_with_log_probs.append((new_samples, log_probs, reward))
|
||||
|
||||
all_ys.append(batch_y)
|
||||
batch_id += to_generate
|
||||
@ -304,6 +377,7 @@ def test(cfg: DictConfig):
|
||||
samples_left_to_save -= to_save
|
||||
samples_left_to_generate -= to_generate
|
||||
chains_left_to_save -= chains_save
|
||||
# break
|
||||
|
||||
print(f"final Computing sampling metrics...")
|
||||
graph_dit_model.sampling_metrics.reset()
|
||||
@ -315,47 +389,46 @@ def test(cfg: DictConfig):
|
||||
print("Samples:")
|
||||
print(samples)
|
||||
|
||||
perm = torch.randperm(len(samples_with_log_probs), device=accelerator.device)
|
||||
samples, log_probs, rewards = samples_with_log_probs[perm]
|
||||
samples = list(samples)
|
||||
log_probs = list(log_probs)
|
||||
for i in range(len(log_probs)):
|
||||
log_probs[i] = torch.sum(log_probs[i], dim=-1).unsqueeze(0)
|
||||
print(f'log_probs: {log_probs[:5]}')
|
||||
print(f'log_probs: {log_probs[0].shape}') # torch.Size([1])
|
||||
rewards = list(rewards)
|
||||
log_probs = torch.cat(log_probs, dim=0)
|
||||
print(f'log_probs: {log_probs.shape}') # torch.Size([1000, 1])
|
||||
old_log_probs = log_probs.clone()
|
||||
# perm = torch.randperm(len(samples_with_log_probs), device=accelerator.device)
|
||||
# samples, log_probs, rewards = samples_with_log_probs[perm]
|
||||
# samples = list(samples)
|
||||
# log_probs = list(log_probs)
|
||||
# for i in range(len(log_probs)):
|
||||
# log_probs[i] = torch.sum(log_probs[i], dim=-1).unsqueeze(0)
|
||||
# print(f'log_probs: {log_probs[:5]}')
|
||||
# print(f'log_probs: {log_probs[0].shape}') # torch.Size([1])
|
||||
# rewards = list(rewards)
|
||||
# log_probs = torch.cat(log_probs, dim=0)
|
||||
# print(f'log_probs: {log_probs.shape}') # torch.Size([1000, 1])
|
||||
# old_log_probs = log_probs.clone()
|
||||
# # multi metrics range
|
||||
# # reward hacking hiking
|
||||
# for inner_epoch in range(cfg.train.n_epochs):
|
||||
# # print(f'rewards: {rewards.shape}') # torch.Size([1000])
|
||||
# print(f'rewards: {rewards[:5]}')
|
||||
# print(f'len rewards: {len(rewards)}')
|
||||
# print(f'type rewards: {type(rewards)}')
|
||||
# if len(rewards) > 1 and isinstance(rewards, list):
|
||||
# rewards = torch.cat(rewards, dim=0)
|
||||
# elif len(rewards) == 1 and isinstance(rewards, list):
|
||||
# rewards = rewards[0]
|
||||
# # print(f'rewards: {rewards.shape}')
|
||||
# advantages = (rewards - torch.mean(rewards)) / (torch.std(rewards) + 1e-6)
|
||||
# print(f'advantages: {advantages.shape}')
|
||||
# with accelerator.accumulate(graph_dit_model):
|
||||
# ratio = torch.exp(log_probs - old_log_probs)
|
||||
# unclipped_loss = -advantages * ratio
|
||||
# # z-score normalization
|
||||
# clipped_loss = -advantages * torch.clamp(ratio,
|
||||
# 1.0 - cfg.ppo.clip_param,
|
||||
# 1.0 + cfg.ppo.clip_param)
|
||||
# loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
|
||||
# accelerator.backward(loss)
|
||||
# optimizer.step()
|
||||
# optimizer.zero_grad()
|
||||
|
||||
# multi metrics range
|
||||
# reward hacking hiking
|
||||
for inner_epoch in range(cfg.train.n_epochs):
|
||||
# print(f'rewards: {rewards.shape}') # torch.Size([1000])
|
||||
print(f'rewards: {rewards[:5]}')
|
||||
print(f'len rewards: {len(rewards)}')
|
||||
print(f'type rewards: {type(rewards)}')
|
||||
if len(rewards) > 1 and isinstance(rewards, list):
|
||||
rewards = torch.cat(rewards, dim=0)
|
||||
elif len(rewards) == 1 and isinstance(rewards, list):
|
||||
rewards = rewards[0]
|
||||
# print(f'rewards: {rewards.shape}')
|
||||
advantages = (rewards - torch.mean(rewards)) / (torch.std(rewards) + 1e-6)
|
||||
print(f'advantages: {advantages.shape}')
|
||||
with accelerator.accumulate(graph_dit_model):
|
||||
ratio = torch.exp(log_probs - old_log_probs)
|
||||
unclipped_loss = -advantages * ratio
|
||||
# z-score normalization
|
||||
clipped_loss = -advantages * torch.clamp(ratio,
|
||||
1.0 - cfg.ppo.clip_param,
|
||||
1.0 + cfg.ppo.clip_param)
|
||||
loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
accelerator.log({"loss": loss.item(), "epoch": inner_epoch})
|
||||
print(f"loss: {loss.item()}, epoch: {inner_epoch}")
|
||||
# accelerator.log({"loss": loss.item(), "epoch": inner_epoch})
|
||||
# print(f"loss: {loss.item()}, epoch: {inner_epoch}")
|
||||
|
||||
|
||||
# trainer = Trainer(
|
||||
|
Loading…
Reference in New Issue
Block a user