need to update the model

This commit is contained in:
mhz 2024-09-12 23:40:42 +02:00
parent 0c60171c71
commit 2ac17caa3c
2 changed files with 121 additions and 48 deletions

View File

@ -239,8 +239,8 @@ class Graph_DiT(pl.LightningModule):
self.val_X_logp.compute(), self.val_E_logp.compute()] self.val_X_logp.compute(), self.val_E_logp.compute()]
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: # if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ", print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ",
f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best : %.2f\n' % (metrics[0], self.best_val_nll)) f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best : %.2f\n' % (metrics[0], self.best_val_nll))
with open("validation-metrics.csv", "a") as f: with open("validation-metrics.csv", "a") as f:
# save the metrics as csv file # save the metrics as csv file

View File

@ -242,6 +242,12 @@ def test(cfg: DictConfig):
optimizer.step() optimizer.step()
optimizer.zero_grad() optimizer.zero_grad()
# return {'loss': loss} # return {'loss': loss}
if epoch % cfg.train.check_val_every_n_epoch == 0:
print(f'print validation loss')
graph_dit_model.eval()
graph_dit_model.on_validation_epoch_start()
graph_dit_model.validation_step(data, epoch)
graph_dit_model.on_validation_epoch_end()
# start testing # start testing
print("start testing") print("start testing")
@ -281,6 +287,53 @@ def test(cfg: DictConfig):
reward = 1.0 reward = 1.0
rewards.append(reward) rewards.append(reward)
return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device) return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device)
# while samples_left_to_generate > 0:
# print(f'samples left to generate: {samples_left_to_generate}/'
# f'{cfg.general.final_model_samples_to_generate}', end='', flush=True)
# bs = 1 * cfg.train.batch_size
# to_generate = min(samples_left_to_generate, bs)
# to_save = min(samples_left_to_save, bs)
# chains_save = min(chains_left_to_save, bs)
# # batch_y = test_y_collection[batch_id : batch_id + to_generate]
# batch_y = torch.ones(to_generate, graph_dit_model.ydim_output, device=graph_dit_model.device)
# cur_sample, log_probs = graph_dit_model.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
# keep_chain=chains_save, number_chain_steps=graph_dit_model.number_chain_steps)
# samples = samples + cur_sample
# reward = graph_reward_fn(cur_sample, device=graph_dit_model.device)
# samples_with_log_probs.append((cur_sample, log_probs, reward))
# all_ys.append(batch_y)
# batch_id += to_generate
# samples_left_to_save -= to_save
# samples_left_to_generate -= to_generate
# chains_left_to_save -= chains_save
# print(f"final Computing sampling metrics...")
# graph_dit_model.sampling_metrics.reset()
# graph_dit_model.sampling_metrics(samples, all_ys, graph_dit_model.name, graph_dit_model.current_epoch, graph_dit_model.val_counter, test=True)
# graph_dit_model.sampling_metrics.reset()
# print(f"Done.")
# # save samples
# print("Samples:")
# print(samples)
# perm = torch.randperm(len(samples_with_log_probs), device=accelerator.device)
# samples, log_probs, rewards = samples_with_log_probs[perm]
# samples = list(samples)
# log_probs = list(log_probs)
# for i in range(len(log_probs)):
# log_probs[i] = torch.sum(log_probs[i], dim=-1).unsqueeze(0)
# print(f'log_probs: {log_probs[:5]}')
# print(f'log_probs: {log_probs[0].shape}') # torch.Size([1])
# rewards = list(rewards)
# log_probs = torch.cat(log_probs, dim=0)
# print(f'log_probs: {log_probs.shape}') # torch.Size([1000, 1])
# old_log_probs = log_probs.clone()
old_log_probs = None
while samples_left_to_generate > 0: while samples_left_to_generate > 0:
print(f'samples left to generate: {samples_left_to_generate}/' print(f'samples left to generate: {samples_left_to_generate}/'
f'{cfg.general.final_model_samples_to_generate}', end='', flush=True) f'{cfg.general.final_model_samples_to_generate}', end='', flush=True)
@ -289,14 +342,34 @@ def test(cfg: DictConfig):
to_save = min(samples_left_to_save, bs) to_save = min(samples_left_to_save, bs)
chains_save = min(chains_left_to_save, bs) chains_save = min(chains_left_to_save, bs)
# batch_y = test_y_collection[batch_id : batch_id + to_generate] # batch_y = test_y_collection[batch_id : batch_id + to_generate]
batch_y = torch.ones(to_generate, graph_dit_model.ydim_output, device=graph_dit_model.device)
cur_sample, log_probs = graph_dit_model.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, # batch_y = torch.ones(to_generate, graph_dit_model.ydim_output, device=graph_dit_model.device)
keep_chain=chains_save, number_chain_steps=graph_dit_model.number_chain_steps)
samples = samples + cur_sample
reward = graph_reward_fn(cur_sample, device=graph_dit_model.device)
samples_with_log_probs.append((cur_sample, log_probs, reward)) # cur_sample, old_log_probs = graph_dit_model.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
# keep_chain=chains_save, number_chain_steps=graph_dit_model.number_chain_steps)
# samples = samples + cur_sample
# reward = graph_reward_fn(cur_sample, device=graph_dit_model.device)
# advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6)
with accelerator.accumulate(graph_dit_model):
batch_y = torch.ones(to_generate, graph_dit_model.ydim_output, device=graph_dit_model.device)
new_samples, log_probs = graph_dit_model.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,keep_chain=chains_save, number_chain_steps=graph_dit_model.number_chain_steps)
samples = samples + new_samples
reward = graph_reward_fn(new_samples, device=graph_dit_model.device)
advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6)
if old_log_probs is None:
old_log_probs = log_probs.clone()
ratio = torch.exp(log_probs - old_log_probs)
unclipped_loss = -advantages * ratio
clipped_loss = -advantages * torch.clamp(ratio,
1.0 - cfg.ppo.clip_param,
1.0 + cfg.ppo.clip_param)
loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
samples_with_log_probs.append((new_samples, log_probs, reward))
all_ys.append(batch_y) all_ys.append(batch_y)
batch_id += to_generate batch_id += to_generate
@ -304,6 +377,7 @@ def test(cfg: DictConfig):
samples_left_to_save -= to_save samples_left_to_save -= to_save
samples_left_to_generate -= to_generate samples_left_to_generate -= to_generate
chains_left_to_save -= chains_save chains_left_to_save -= chains_save
# break
print(f"final Computing sampling metrics...") print(f"final Computing sampling metrics...")
graph_dit_model.sampling_metrics.reset() graph_dit_model.sampling_metrics.reset()
@ -315,47 +389,46 @@ def test(cfg: DictConfig):
print("Samples:") print("Samples:")
print(samples) print(samples)
perm = torch.randperm(len(samples_with_log_probs), device=accelerator.device) # perm = torch.randperm(len(samples_with_log_probs), device=accelerator.device)
samples, log_probs, rewards = samples_with_log_probs[perm] # samples, log_probs, rewards = samples_with_log_probs[perm]
samples = list(samples) # samples = list(samples)
log_probs = list(log_probs) # log_probs = list(log_probs)
for i in range(len(log_probs)): # for i in range(len(log_probs)):
log_probs[i] = torch.sum(log_probs[i], dim=-1).unsqueeze(0) # log_probs[i] = torch.sum(log_probs[i], dim=-1).unsqueeze(0)
print(f'log_probs: {log_probs[:5]}') # print(f'log_probs: {log_probs[:5]}')
print(f'log_probs: {log_probs[0].shape}') # torch.Size([1]) # print(f'log_probs: {log_probs[0].shape}') # torch.Size([1])
rewards = list(rewards) # rewards = list(rewards)
log_probs = torch.cat(log_probs, dim=0) # log_probs = torch.cat(log_probs, dim=0)
print(f'log_probs: {log_probs.shape}') # torch.Size([1000, 1]) # print(f'log_probs: {log_probs.shape}') # torch.Size([1000, 1])
old_log_probs = log_probs.clone() # old_log_probs = log_probs.clone()
# # multi metrics range
# # reward hacking hiking
# for inner_epoch in range(cfg.train.n_epochs):
# # print(f'rewards: {rewards.shape}') # torch.Size([1000])
# print(f'rewards: {rewards[:5]}')
# print(f'len rewards: {len(rewards)}')
# print(f'type rewards: {type(rewards)}')
# if len(rewards) > 1 and isinstance(rewards, list):
# rewards = torch.cat(rewards, dim=0)
# elif len(rewards) == 1 and isinstance(rewards, list):
# rewards = rewards[0]
# # print(f'rewards: {rewards.shape}')
# advantages = (rewards - torch.mean(rewards)) / (torch.std(rewards) + 1e-6)
# print(f'advantages: {advantages.shape}')
# with accelerator.accumulate(graph_dit_model):
# ratio = torch.exp(log_probs - old_log_probs)
# unclipped_loss = -advantages * ratio
# # z-score normalization
# clipped_loss = -advantages * torch.clamp(ratio,
# 1.0 - cfg.ppo.clip_param,
# 1.0 + cfg.ppo.clip_param)
# loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
# accelerator.backward(loss)
# optimizer.step()
# optimizer.zero_grad()
# multi metrics range # accelerator.log({"loss": loss.item(), "epoch": inner_epoch})
# reward hacking hiking # print(f"loss: {loss.item()}, epoch: {inner_epoch}")
for inner_epoch in range(cfg.train.n_epochs):
# print(f'rewards: {rewards.shape}') # torch.Size([1000])
print(f'rewards: {rewards[:5]}')
print(f'len rewards: {len(rewards)}')
print(f'type rewards: {type(rewards)}')
if len(rewards) > 1 and isinstance(rewards, list):
rewards = torch.cat(rewards, dim=0)
elif len(rewards) == 1 and isinstance(rewards, list):
rewards = rewards[0]
# print(f'rewards: {rewards.shape}')
advantages = (rewards - torch.mean(rewards)) / (torch.std(rewards) + 1e-6)
print(f'advantages: {advantages.shape}')
with accelerator.accumulate(graph_dit_model):
ratio = torch.exp(log_probs - old_log_probs)
unclipped_loss = -advantages * ratio
# z-score normalization
clipped_loss = -advantages * torch.clamp(ratio,
1.0 - cfg.ppo.clip_param,
1.0 + cfg.ppo.clip_param)
loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
accelerator.log({"loss": loss.item(), "epoch": inner_epoch})
print(f"loss: {loss.item()}, epoch: {inner_epoch}")
# trainer = Trainer( # trainer = Trainer(