explore the 201 space script
This commit is contained in:
parent
3950a8438d
commit
6d9db64a48
82
graph_dit/exp_201/main.py
Normal file
82
graph_dit/exp_201/main.py
Normal file
@ -0,0 +1,82 @@
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from nas_201_api import NASBench201API as API
|
||||
from naswot.score_networks import get_nasbench201_idx_score
|
||||
from naswot import datasets as dt
|
||||
from naswot import nasspace
|
||||
|
||||
class Args():
|
||||
pass
|
||||
args = Args()
|
||||
args.trainval = True
|
||||
args.augtype = 'none'
|
||||
args.repeat = 1
|
||||
args.score = 'hook_logdet'
|
||||
args.sigma = 0.05
|
||||
args.nasspace = 'nasbench201'
|
||||
args.batch_size = 128
|
||||
args.GPU = '0'
|
||||
args.dataset = 'cifar10'
|
||||
args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
|
||||
args.data_loc = '../cifardata/'
|
||||
args.seed = 777
|
||||
args.init = ''
|
||||
args.save_loc = 'results'
|
||||
args.save_string = 'naswot'
|
||||
args.dropout = False
|
||||
args.maxofn = 1
|
||||
args.n_samples = 100
|
||||
args.n_runs = 500
|
||||
args.stem_out_channels = 16
|
||||
args.num_stacks = 3
|
||||
args.num_modules_per_stack = 3
|
||||
args.num_labels = 1
|
||||
searchspace = nasspace.get_search_space(args)
|
||||
train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args)
|
||||
device = torch.device('cuda:2')
|
||||
|
||||
|
||||
|
||||
# source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
|
||||
# api = API(source)
|
||||
|
||||
|
||||
|
||||
# 示例百分数列表,精确到小数点后两位
|
||||
# percentages = [5.12, 15.78, 25.43, 35.22, 45.99, 55.34, 65.12, 75.68, 85.99, 95.25, 23.45, 12.34, 37.89, 58.67, 64.23, 72.15, 81.76, 99.99, 42.11, 61.58, 77.34, 14.56]
|
||||
percentages = []
|
||||
|
||||
len_201 = 15625
|
||||
|
||||
for i in range(len_201):
|
||||
percentage = get_nasbench201_idx_score(i, train_loader, searchspace, args, device)
|
||||
percentages.append(percentage)
|
||||
|
||||
# 定义10%区间
|
||||
bins = [i for i in range(0, 101, 10)]
|
||||
|
||||
# 对数据进行分箱,计算每个区间的数据量
|
||||
hist, bin_edges = pd.cut(percentages, bins=bins, right=False, retbins=True, include_lowest=True)
|
||||
bin_counts = hist.value_counts().sort_index()
|
||||
|
||||
total_counts = len(percentages)
|
||||
percentages_in_bins = (bin_counts / total_counts) * 100
|
||||
|
||||
# 绘制条形图
|
||||
plt.figure(figsize=(10, 6))
|
||||
bars = plt.bar(bin_counts.index.astype(str), bin_counts.values, width=0.9, color='skyblue')
|
||||
|
||||
for bar, percentage in zip(bars, percentages_in_bins):
|
||||
plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(),
|
||||
f'{percentage:.2f}%', ha='center', va='bottom')
|
||||
|
||||
# 添加标题和标签
|
||||
plt.title('Distribution of Percentages in 10% Intervals')
|
||||
plt.xlabel('Percentage Interval')
|
||||
plt.ylabel('Count')
|
||||
|
||||
# 显示图表
|
||||
plt.xticks(rotation=45)
|
||||
plt.savefig('barplog.png')
|
||||
|
Loading…
Reference in New Issue
Block a user