MeCo/correlation/foresight/models/nasbench2.py

141 lines
5.2 KiB
Python
Raw Permalink Normal View History

2024-01-23 03:08:45 +01:00
# Copyright 2021 Samsung Electronics Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from .nasbench2_ops import *
def gen_searchcell_mask_from_arch_str(arch_str):
nodes = arch_str.split('+')
nodes = [node[1:-1].split('|') for node in nodes]
nodes = [[op_and_input.split('~') for op_and_input in node] for node in nodes]
keep_mask = []
for curr_node_idx in range(len(nodes)):
for prev_node_idx in range(curr_node_idx+1):
_op = [edge[0] for edge in nodes[curr_node_idx] if int(edge[1]) == prev_node_idx]
assert len(_op) == 1, 'The arch string does not follow the assumption of 1 connection between two nodes.'
for _op_name in OPS.keys():
keep_mask.append(_op[0] == _op_name)
return keep_mask
def get_model_from_arch_str(arch_str, num_classes, use_bn=True, init_channels=16):
keep_mask = gen_searchcell_mask_from_arch_str(arch_str)
net = NAS201Model(arch_str=arch_str, num_classes=num_classes, use_bn=use_bn, keep_mask=keep_mask, stem_ch=init_channels)
return net
def get_super_model(num_classes, use_bn=True):
net = NAS201Model(arch_str=arch_str, num_classes=num_classes, use_bn=use_bn)
return net
class NAS201Model(nn.Module):
def __init__(self, arch_str, num_classes, use_bn=True, keep_mask=None, stem_ch=16):
super(NAS201Model, self).__init__()
self.arch_str=arch_str
self.num_classes=num_classes
self.use_bn= use_bn
self.stem = stem(out_channels=stem_ch, use_bn=use_bn)
self.stack_cell1 = nn.Sequential(*[SearchCell(in_channels=stem_ch, out_channels=stem_ch, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)])
self.reduction1 = reduction(in_channels=stem_ch, out_channels=stem_ch*2)
self.stack_cell2 = nn.Sequential(*[SearchCell(in_channels=stem_ch*2, out_channels=stem_ch*2, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)])
self.reduction2 = reduction(in_channels=stem_ch*2, out_channels=stem_ch*4)
self.stack_cell3 = nn.Sequential(*[SearchCell(in_channels=stem_ch*4, out_channels=stem_ch*4, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)])
# self.top = top(in_dims=stem_ch*4, num_classes=num_classes, use_bn=use_bn)
self.top = top(in_dims=stem_ch*4, use_bn=use_bn)
self.classifier = nn.Linear(stem_ch*4, num_classes)
self.pre_GAP = nn.Sequential(nn.BatchNorm2d(stem_ch * 4), nn.ReLU(inplace=True))
def forward(self, x):
x = self.stem(x)
x = self.stack_cell1(x)
x = self.reduction1(x)
x = self.stack_cell2(x)
x = self.reduction2(x)
x = self.stack_cell3(x)
x = self.top(x)
x = self.classifier(x)
return x
def forward_pre_GAP(self, x):
x = self.stem(x)
x = self.stack_cell1(x)
x = self.reduction1(x)
x = self.stack_cell2(x)
x = self.reduction2(x)
x = self.stack_cell3(x)
x = self.pre_GAP(x)
return x
def get_prunable_copy(self, bn=False):
model_new = get_model_from_arch_str(self.arch_str, self.num_classes, use_bn=bn)
#TODO this is quite brittle and doesn't work with nn.Sequential when bn is different
# it is only required to maintain initialization -- maybe init after get_punable_copy?
model_new.load_state_dict(self.state_dict(), strict=False)
model_new.train()
return model_new
def get_arch_str_from_model(net):
search_cell = net.stack_cell1[0].options
keep_mask = net.stack_cell1[0].keep_mask
num_nodes = net.stack_cell1[0].num_nodes
nodes = []
idx = 0
for curr_node in range(num_nodes -1):
edges = []
for prev_node in range(curr_node+1): # n-1 prev nodes
for _op_name in OPS.keys():
if keep_mask[idx]:
edges.append(f'{_op_name}~{prev_node}')
idx += 1
node_str = '|'.join(edges)
node_str = f'|{node_str}|'
nodes.append(node_str)
arch_str = '+'.join(nodes)
return arch_str
if __name__ == "__main__":
arch_str = '|nor_conv_3x3~0|+|none~0|none~1|+|avg_pool_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|'
n = get_model_from_arch_str(arch_str=arch_str, num_classes=10)
print(n.stack_cell1[0])
arch_str2 = get_arch_str_from_model(n)
print(arch_str)
print(arch_str2)
print(f'Are the two arch strings same? {arch_str == arch_str2}')