update
This commit is contained in:
2
.idea/MeCo.iml
generated
2
.idea/MeCo.iml
generated
@@ -2,7 +2,7 @@
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="jdk" jdkName="Remote Python 3.8.16 (sftp://jty@172.16.214.99:7712/jty/anaconda3/envs/zero-cost-nas/bin/python3.8)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
||||
289
.idea/deployment.xml
generated
289
.idea/deployment.xml
generated
@@ -1,120 +1,372 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="PublishConfigData" remoteFilesAllowedToDisappearOnAutoupload="false">
|
||||
<component name="PublishConfigData" autoUpload="Always" serverName="jty@172.16.214.99:7712 password (21)" remoteFilesAllowedToDisappearOnAutoupload="false">
|
||||
<serverData>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password">
|
||||
<paths name="jty@172.16.185.253:22 password">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password (10)">
|
||||
<paths name="jty@172.16.185.253:22 password (10)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password (11)">
|
||||
<paths name="jty@172.16.185.253:22 password (11)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password (2)">
|
||||
<paths name="jty@172.16.185.253:22 password (2)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password (3)">
|
||||
<paths name="jty@172.16.185.253:22 password (3)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password (4)">
|
||||
<paths name="jty@172.16.185.253:22 password (4)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password (5)">
|
||||
<paths name="jty@172.16.185.253:22 password (5)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password (6)">
|
||||
<paths name="jty@172.16.185.253:22 password (6)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password (7)">
|
||||
<paths name="jty@172.16.185.253:22 password (7)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password (8)">
|
||||
<paths name="jty@172.16.185.253:22 password (8)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.100:7712 password (9)">
|
||||
<paths name="jty@172.16.185.253:22 password (9)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.99:7712 password">
|
||||
<paths name="jty@172.16.214.100:7712 password">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.99:7712 password (2)">
|
||||
<paths name="jty@172.16.214.100:7712 password (10)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.99:7712 password (3)">
|
||||
<paths name="jty@172.16.214.100:7712 password (11)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.99:7712 password (4)">
|
||||
<paths name="jty@172.16.214.100:7712 password (12)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.99:7712 password (5)">
|
||||
<paths name="jty@172.16.214.100:7712 password (13)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="ubuntu@172.16.214.99:7712 password (6)">
|
||||
<paths name="jty@172.16.214.100:7712 password (14)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (15)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (16)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (17)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (18)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (19)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (2)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (20)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (21)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (3)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (4)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (5)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (6)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (7)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (8)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.100:7712 password (9)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (10)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (11)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (12)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (13)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (14)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (15)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (16)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (17)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (18)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (19)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping deploy="/tmp/pycharm_project_928" local="$PROJECT_DIR$" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (2)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (20)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping deploy="/jty/jty" local="$PROJECT_DIR$" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (21)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping deploy="/jty/jty/meco_submit" local="$PROJECT_DIR$" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (3)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (4)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (5)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (6)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (7)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (8)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="jty@172.16.214.99:7712 password (9)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
@@ -122,5 +374,6 @@
|
||||
</serverdata>
|
||||
</paths>
|
||||
</serverData>
|
||||
<option name="myAutoUpload" value="ALWAYS" />
|
||||
</component>
|
||||
</project>
|
||||
5
.idea/misc.xml
generated
5
.idea/misc.xml
generated
@@ -1,4 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Remote Python 3.8.16 (sftp://ubuntu@172.16.214.100:7712/jty/anaconda3/envs/meco/bin/python3.8)" project-jdk-type="Python SDK" />
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="Remote Python 3.8.16 (sftp://jty@172.16.214.99:7712/jty/anaconda3/envs/zero-cost-nas/bin/python3.8)" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Remote Python 3.8.16 (sftp://jty@172.16.214.99:7712/jty/anaconda3/envs/zero-cost-nas/bin/python3.8)" project-jdk-type="Python SDK" />
|
||||
</project>
|
||||
@@ -11,24 +11,60 @@ from models import get_cell_based_tiny_net
|
||||
import pickle
|
||||
|
||||
|
||||
def get_score(net, x, device, measure='meco'):
|
||||
result_list = []
|
||||
|
||||
def forward_hook(module, data_input, data_output):
|
||||
fea = data_output[0].clone().detach()
|
||||
n = torch.tensor(fea.shape[0])
|
||||
fea = fea.reshape(n, -1)
|
||||
if measure == 'meco':
|
||||
corr = torch.corrcoef(fea)
|
||||
corr[torch.isnan(corr)] = 0
|
||||
corr[torch.isinf(corr)] = 0
|
||||
values = torch.linalg.eig(corr)[0]
|
||||
result = torch.min(torch.real(values))
|
||||
elif measure == 'meco_opt':
|
||||
idxs = random.sample(range(n), 8)
|
||||
fea = fea[idxs, :]
|
||||
corr = torch.corrcoef(fea)
|
||||
corr[torch.isnan(corr)] = 0
|
||||
corr[torch.isinf(corr)] = 0
|
||||
values = torch.linalg.eig(corr)[0]
|
||||
result = torch.min(torch.real(values)) * n / 8
|
||||
result_list.append(result)
|
||||
for name, modules in net.named_modules():
|
||||
modules.register_forward_hook(forward_hook)
|
||||
x = x.to(device)
|
||||
net(x)
|
||||
results = torch.tensor(result_list)
|
||||
results = results[torch.logical_not(torch.isnan(results))]
|
||||
results = results[torch.logical_not(torch.isinf(results))]
|
||||
res = torch.sum(results)
|
||||
result_list.clear()
|
||||
|
||||
return res.item()
|
||||
|
||||
def get_num_classes(args):
|
||||
return 100 if args.dataset == 'cifar100' else 10 if args.dataset == 'cifar10' else 120
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(description='Zero-cost Metrics for NAS-Bench-201')
|
||||
parser.add_argument('--api_loc', default='../data/NAS-Bench-201-v1_0-e61699.pth',
|
||||
type=str, help='path to API')
|
||||
# parser.add_argument('--api_loc', default='../data/NAS-Bench-201-v1_0-e61699.pth',
|
||||
# type=str, help='path to API')
|
||||
parser.add_argument('--outdir', default='./',
|
||||
type=str, help='output directory')
|
||||
parser.add_argument('--search_space', type=str, default='tss', choices=['tss', 'sss'])
|
||||
parser.add_argument('--init_w_type', type=str, default='none',
|
||||
help='weight initialization (before pruning) type [none, xavier, kaiming, zero, one]')
|
||||
parser.add_argument('--init_b_type', type=str, default='none',
|
||||
help='bias initialization (before pruning) type [none, xavier, kaiming, zero, one]')
|
||||
parser.add_argument('--batch_size', default=64, type=int)
|
||||
parser.add_argument('--dataset', type=str, default='ImageNet16-120',
|
||||
parser.add_argument('--measure', type=str, default='meco', choices=['meco', 'meco_opt'])
|
||||
parser.add_argument('--batch_size', default=1, type=int)
|
||||
parser.add_argument('--dataset', type=str, default='cifar10',
|
||||
help='dataset to use [cifar10, cifar100, ImageNet16-120]')
|
||||
parser.add_argument('--gpu', type=int, default=5, help='GPU index to work on')
|
||||
parser.add_argument('--gpu', type=int, default=0, help='GPU index to work on')
|
||||
parser.add_argument('--data_size', type=int, default=32, help='data_size')
|
||||
parser.add_argument('--num_data_workers', type=int, default=2, help='number of workers for dataloaders')
|
||||
parser.add_argument('--dataload', type=str, default='appoint', help='random, grasp, appoint supported')
|
||||
@@ -49,11 +85,9 @@ if __name__ == '__main__':
|
||||
args = parse_arguments()
|
||||
print(args.device)
|
||||
|
||||
if args.noacc:
|
||||
api = pickle.load(open(args.api_loc,'rb'))
|
||||
else:
|
||||
from nas_201_api import NASBench201API as API
|
||||
api = API(args.api_loc)
|
||||
from nats_bench import create
|
||||
|
||||
api = create(None, args.search_space, fast_mode=True, verbose=False)
|
||||
|
||||
torch.manual_seed(args.seed)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
@@ -61,9 +95,6 @@ if __name__ == '__main__':
|
||||
|
||||
train_loader, val_loader = get_cifar_dataloaders(args.batch_size, args.batch_size, args.dataset, args.num_data_workers, resize=args.data_size)
|
||||
x, y = next(iter(train_loader))
|
||||
# random data
|
||||
# x = torch.rand((args.batch_size, 3, args.data_size, args.data_size))
|
||||
# y = 0
|
||||
|
||||
cached_res = []
|
||||
pre = 'cf' if 'cifar' in args.dataset else 'im'
|
||||
@@ -81,7 +112,6 @@ if __name__ == '__main__':
|
||||
break
|
||||
|
||||
res = {'i': i, 'arch': arch_str}
|
||||
# print(arch_str)
|
||||
if args.search_space == 'tss':
|
||||
net = nasbench2.get_model_from_arch_str(arch_str, get_num_classes(args))
|
||||
arch_str2 = nasbench2.get_arch_str_from_model(net)
|
||||
@@ -91,21 +121,22 @@ if __name__ == '__main__':
|
||||
raise ValueError
|
||||
elif args.search_space == 'sss':
|
||||
config = api.get_net_config(i, args.dataset)
|
||||
# print(config)
|
||||
net = get_cell_based_tiny_net(config)
|
||||
net.to(args.device)
|
||||
# print(net)
|
||||
|
||||
init_net(net, args.init_w_type, args.init_b_type)
|
||||
|
||||
# print(x.size(), y)
|
||||
measures = get_score(net, x, i, args.device)
|
||||
measures = get_score(net, x, args.device, measure=args.measure)
|
||||
|
||||
res['meco'] = measures
|
||||
res[f'{args.measure}'] = measures
|
||||
|
||||
if not args.noacc:
|
||||
info = api.get_more_info(i, 'cifar10-valid' if args.dataset == 'cifar10' else args.dataset, iepoch=None,
|
||||
hp='200', is_random=False)
|
||||
if args.search_space == 'tss':
|
||||
info = api.get_more_info(i, 'cifar10-valid' if args.dataset == 'cifar10' else args.dataset, iepoch=None,
|
||||
hp='200', is_random=False)
|
||||
else:
|
||||
info = api.get_more_info(i, 'cifar10-valid' if args.dataset == 'cifar10' else args.dataset, iepoch=None,
|
||||
hp='90', is_random=False)
|
||||
|
||||
trainacc = info['train-accuracy']
|
||||
valacc = info['valid-accuracy']
|
||||
|
||||
24
correlation/compute_rho.py
Normal file
24
correlation/compute_rho.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import pandas as pd
|
||||
import pickle
|
||||
|
||||
# path = 'result/sss_cf10_meco.p'
|
||||
path = 'nb2_sss_cf10_seed42_dlappoint_dlinfo1_initwnone_initbnone_1.p'
|
||||
meco = []
|
||||
accs = []
|
||||
with open(path, 'rb') as f:
|
||||
while True:
|
||||
try:
|
||||
fl = pickle.load(f)
|
||||
meco.append(fl['meco'])
|
||||
accs.append(fl['testacc'])
|
||||
except:
|
||||
break
|
||||
|
||||
N = len(meco)
|
||||
print(N)
|
||||
df = pd.DataFrame({
|
||||
'meco':meco[:N],
|
||||
'acc': accs[:N]
|
||||
})
|
||||
print(df.corr(method='spearman'))
|
||||
|
||||
16
correlation/foresight/__init__.py
Normal file
16
correlation/foresight/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
from .version import *
|
||||
133
correlation/foresight/dataset.py
Normal file
133
correlation/foresight/dataset.py
Normal file
@@ -0,0 +1,133 @@
|
||||
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
|
||||
from torchvision.datasets import MNIST, CIFAR10, CIFAR100, SVHN
|
||||
from torchvision.transforms import Compose, ToTensor, Normalize
|
||||
from torchvision import transforms
|
||||
from torch.utils.data import TensorDataset, DataLoader
|
||||
import torch
|
||||
|
||||
from .imagenet16 import *
|
||||
|
||||
|
||||
def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_workers, resize=None, datadir='_dataset'):
|
||||
# print(dataset)
|
||||
if 'ImageNet16' in dataset:
|
||||
mean = [x / 255 for x in [122.68, 116.66, 104.01]]
|
||||
std = [x / 255 for x in [63.22, 61.26 , 65.09]]
|
||||
size, pad = 16, 2
|
||||
elif 'cifar' in dataset:
|
||||
mean = (0.4914, 0.4822, 0.4465)
|
||||
std = (0.2023, 0.1994, 0.2010)
|
||||
size, pad = 32, 4
|
||||
elif 'svhn' in dataset:
|
||||
mean = (0.5, 0.5, 0.5)
|
||||
std = (0.5, 0.5, 0.5)
|
||||
size, pad = 32, 0
|
||||
elif dataset == 'ImageNet1k':
|
||||
from .h5py_dataset import H5Dataset
|
||||
size,pad = 224,2
|
||||
mean = (0.485, 0.456, 0.406)
|
||||
std = (0.229, 0.224, 0.225)
|
||||
#resize = 256
|
||||
elif 'random' in dataset:
|
||||
mean = (0.5, 0.5, 0.5)
|
||||
std = (1, 1, 1)
|
||||
size, pad = 32, 0
|
||||
|
||||
if resize is None:
|
||||
resize = size
|
||||
|
||||
train_transform = transforms.Compose([
|
||||
transforms.RandomCrop(size, padding=pad),
|
||||
transforms.Resize(resize),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean,std),
|
||||
])
|
||||
|
||||
test_transform = transforms.Compose([
|
||||
transforms.Resize(resize),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean,std),
|
||||
])
|
||||
|
||||
if dataset == 'cifar10':
|
||||
train_dataset = CIFAR10(datadir, True, train_transform, download=True)
|
||||
test_dataset = CIFAR10(datadir, False, test_transform, download=True)
|
||||
elif dataset == 'cifar100':
|
||||
train_dataset = CIFAR100(datadir, True, train_transform, download=True)
|
||||
test_dataset = CIFAR100(datadir, False, test_transform, download=True)
|
||||
elif dataset == 'svhn':
|
||||
train_dataset = SVHN(datadir, split='train', transform=train_transform, download=True)
|
||||
test_dataset = SVHN(datadir, split='test', transform=test_transform, download=True)
|
||||
elif dataset == 'ImageNet16-120':
|
||||
train_dataset = ImageNet16(os.path.join(datadir, 'ImageNet16'), True , train_transform, 120)
|
||||
test_dataset = ImageNet16(os.path.join(datadir, 'ImageNet16'), False, test_transform , 120)
|
||||
elif dataset == 'ImageNet1k':
|
||||
train_dataset = H5Dataset(os.path.join(datadir, 'imagenet-train-256.h5'), transform=train_transform)
|
||||
test_dataset = H5Dataset(os.path.join(datadir, 'imagenet-val-256.h5'), transform=test_transform)
|
||||
|
||||
else:
|
||||
raise ValueError('There are no more cifars or imagenets.')
|
||||
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
train_batch_size,
|
||||
shuffle=True,
|
||||
num_workers=num_workers,
|
||||
pin_memory=True)
|
||||
test_loader = DataLoader(
|
||||
test_dataset,
|
||||
test_batch_size,
|
||||
shuffle=False,
|
||||
num_workers=num_workers,
|
||||
pin_memory=True)
|
||||
|
||||
|
||||
return train_loader, test_loader
|
||||
|
||||
|
||||
def get_mnist_dataloaders(train_batch_size, val_batch_size, num_workers):
|
||||
|
||||
data_transform = Compose([transforms.ToTensor()])
|
||||
|
||||
# Normalise? transforms.Normalize((0.1307,), (0.3081,))
|
||||
|
||||
train_dataset = MNIST("_dataset", True, data_transform, download=True)
|
||||
test_dataset = MNIST("_dataset", False, data_transform, download=True)
|
||||
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
train_batch_size,
|
||||
shuffle=True,
|
||||
num_workers=num_workers,
|
||||
pin_memory=True)
|
||||
test_loader = DataLoader(
|
||||
test_dataset,
|
||||
val_batch_size,
|
||||
shuffle=False,
|
||||
num_workers=num_workers,
|
||||
pin_memory=True)
|
||||
|
||||
return train_loader, test_loader
|
||||
|
||||
if __name__ == '__main__':
|
||||
tr, te = get_cifar_dataloaders(64, 64, 'random', 2, resize=None, datadir='_dataset')
|
||||
for x, y in tr:
|
||||
print(x.size(), y.size())
|
||||
break
|
||||
55
correlation/foresight/h5py_dataset.py
Normal file
55
correlation/foresight/h5py_dataset.py
Normal file
@@ -0,0 +1,55 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
class H5Dataset(Dataset):
|
||||
def __init__(self, h5_path, transform=None):
|
||||
self.h5_path = h5_path
|
||||
self.h5_file = None
|
||||
self.length = len(h5py.File(h5_path, 'r'))
|
||||
self.transform = transform
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
#loading in getitem allows us to use multiple processes for data loading
|
||||
#because hdf5 files aren't pickelable so can't transfer them across processes
|
||||
# https://discuss.pytorch.org/t/hdf5-a-data-format-for-pytorch/40379
|
||||
# https://discuss.pytorch.org/t/dataloader-when-num-worker-0-there-is-bug/25643/16
|
||||
# TODO possible look at __getstate__ and __setstate__ as a more elegant solution
|
||||
if self.h5_file is None:
|
||||
self.h5_file = h5py.File(self.h5_path, 'r')
|
||||
|
||||
record = self.h5_file[str(index)]
|
||||
|
||||
if self.transform:
|
||||
x = Image.fromarray(record['data'][()])
|
||||
x = self.transform(x)
|
||||
else:
|
||||
x = torch.from_numpy(record['data'][()])
|
||||
|
||||
y = record['target'][()]
|
||||
y = torch.from_numpy(np.asarray(y))
|
||||
|
||||
return (x,y)
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
142
correlation/foresight/imagenet16.py
Normal file
142
correlation/foresight/imagenet16.py
Normal file
@@ -0,0 +1,142 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import hashlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import torch.utils.data as data
|
||||
from PIL import Image
|
||||
|
||||
if sys.version_info[0] == 2:
|
||||
import cPickle as pickle
|
||||
else:
|
||||
import pickle
|
||||
|
||||
|
||||
def calculate_md5(fpath, chunk_size=1024 * 1024):
|
||||
md5 = hashlib.md5()
|
||||
with open(fpath, 'rb') as f:
|
||||
for chunk in iter(lambda: f.read(chunk_size), b''):
|
||||
md5.update(chunk)
|
||||
return md5.hexdigest()
|
||||
|
||||
|
||||
def check_md5(fpath, md5, **kwargs):
|
||||
return md5 == calculate_md5(fpath, **kwargs)
|
||||
|
||||
|
||||
def check_integrity(fpath, md5=None):
|
||||
if not os.path.isfile(fpath):
|
||||
print(fpath)
|
||||
return False
|
||||
if md5 is None:
|
||||
return True
|
||||
else:
|
||||
return check_md5(fpath, md5)
|
||||
|
||||
|
||||
class ImageNet16(data.Dataset):
|
||||
# http://image-net.org/download-images
|
||||
# A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets
|
||||
# https://arxiv.org/pdf/1707.08819.pdf
|
||||
|
||||
train_list = [
|
||||
['train_data_batch_1', '27846dcaa50de8e21a7d1a35f30f0e91'],
|
||||
['train_data_batch_2', 'c7254a054e0e795c69120a5727050e3f'],
|
||||
['train_data_batch_3', '4333d3df2e5ffb114b05d2ffc19b1e87'],
|
||||
['train_data_batch_4', '1620cdf193304f4a92677b695d70d10f'],
|
||||
['train_data_batch_5', '348b3c2fdbb3940c4e9e834affd3b18d'],
|
||||
['train_data_batch_6', '6e765307c242a1b3d7d5ef9139b48945'],
|
||||
['train_data_batch_7', '564926d8cbf8fc4818ba23d2faac7564'],
|
||||
['train_data_batch_8', 'f4755871f718ccb653440b9dd0ebac66'],
|
||||
['train_data_batch_9', 'bb6dd660c38c58552125b1a92f86b5d4'],
|
||||
['train_data_batch_10', '8f03f34ac4b42271a294f91bf480f29b'],
|
||||
]
|
||||
valid_list = [
|
||||
['val_data', '3410e3017fdaefba8d5073aaa65e4bd6'],
|
||||
]
|
||||
|
||||
def __init__(self, root, train, transform, use_num_of_class_only=None):
|
||||
self.root = root
|
||||
self.transform = transform
|
||||
self.train = train # training set or valid set
|
||||
if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.')
|
||||
|
||||
if self.train:
|
||||
downloaded_list = self.train_list
|
||||
else:
|
||||
downloaded_list = self.valid_list
|
||||
self.data = []
|
||||
self.targets = []
|
||||
|
||||
# now load the picked numpy arrays
|
||||
for i, (file_name, checksum) in enumerate(downloaded_list):
|
||||
file_path = os.path.join(self.root, file_name)
|
||||
# print ('Load {:}/{:02d}-th : {:}'.format(i, len(downloaded_list), file_path))
|
||||
with open(file_path, 'rb') as f:
|
||||
if sys.version_info[0] == 2:
|
||||
entry = pickle.load(f)
|
||||
else:
|
||||
entry = pickle.load(f, encoding='latin1')
|
||||
self.data.append(entry['data'])
|
||||
self.targets.extend(entry['labels'])
|
||||
self.data = np.vstack(self.data).reshape(-1, 3, 16, 16)
|
||||
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
|
||||
if use_num_of_class_only is not None:
|
||||
assert isinstance(use_num_of_class_only,
|
||||
int) and use_num_of_class_only > 0 and use_num_of_class_only < 1000, 'invalid use_num_of_class_only : {:}'.format(
|
||||
use_num_of_class_only)
|
||||
new_data, new_targets = [], []
|
||||
for I, L in zip(self.data, self.targets):
|
||||
if 1 <= L <= use_num_of_class_only:
|
||||
new_data.append(I)
|
||||
new_targets.append(L)
|
||||
self.data = new_data
|
||||
self.targets = new_targets
|
||||
# self.mean.append(entry['mean'])
|
||||
# self.mean = np.vstack(self.mean).reshape(-1, 3, 16, 16)
|
||||
# self.mean = np.mean(np.mean(np.mean(self.mean, axis=0), axis=1), axis=1)
|
||||
# print ('Mean : {:}'.format(self.mean))
|
||||
# temp = self.data - np.reshape(self.mean, (1, 1, 1, 3))
|
||||
# std_data = np.std(temp, axis=0)
|
||||
# std_data = np.mean(np.mean(std_data, axis=0), axis=0)
|
||||
# print ('Std : {:}'.format(std_data))
|
||||
|
||||
def __getitem__(self, index):
|
||||
img, target = self.data[index], self.targets[index] - 1
|
||||
|
||||
img = Image.fromarray(img)
|
||||
|
||||
if self.transform is not None:
|
||||
img = self.transform(img)
|
||||
|
||||
return img, target
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def _check_integrity(self):
|
||||
root = self.root
|
||||
for fentry in (self.train_list + self.valid_list):
|
||||
filename, md5 = fentry[0], fentry[1]
|
||||
fpath = os.path.join(root, filename)
|
||||
if not check_integrity(fpath, md5):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
#
|
||||
if __name__ == '__main__':
|
||||
train = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', True, None)
|
||||
valid = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', False, None)
|
||||
|
||||
print(len(train))
|
||||
print(len(valid))
|
||||
image, label = train[111]
|
||||
trainX = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', True, None, 200)
|
||||
validX = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', False, None, 200)
|
||||
print(len(trainX))
|
||||
print(len(validX))
|
||||
# import pdb; pdb.set_trace()
|
||||
19
correlation/foresight/models/__init__.py
Normal file
19
correlation/foresight/models/__init__.py
Normal file
@@ -0,0 +1,19 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
from os.path import dirname, basename, isfile, join
|
||||
import glob
|
||||
modules = glob.glob(join(dirname(__file__), "*.py"))
|
||||
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
||||
251
correlation/foresight/models/nasbench1.py
Normal file
251
correlation/foresight/models/nasbench1.py
Normal file
@@ -0,0 +1,251 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
"""Builds the Pytorch computational graph.
|
||||
Tensors flowing into a single vertex are added together for all vertices
|
||||
except the output, which is concatenated instead. Tensors flowing out of input
|
||||
are always added.
|
||||
If interior edge channels don't match, drop the extra channels (channels are
|
||||
guaranteed non-decreasing). Tensors flowing out of the input as always
|
||||
projected instead.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
from .nasbench1_ops import *
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class Network(nn.Module):
|
||||
def __init__(self, spec, stem_out, num_stacks, num_mods, num_classes, bn=True):
|
||||
super(Network, self).__init__()
|
||||
|
||||
self.spec=spec
|
||||
self.stem_out=stem_out
|
||||
self.num_stacks=num_stacks
|
||||
self.num_mods=num_mods
|
||||
self.num_classes=num_classes
|
||||
|
||||
self.layers = nn.ModuleList([])
|
||||
|
||||
in_channels = 3
|
||||
out_channels = stem_out
|
||||
|
||||
# initial stem convolution
|
||||
stem_conv = ConvBnRelu(in_channels, out_channels, 3, 1, 1, bn=bn)
|
||||
self.layers.append(stem_conv)
|
||||
|
||||
in_channels = out_channels
|
||||
for stack_num in range(num_stacks):
|
||||
if stack_num > 0:
|
||||
downsample = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.layers.append(downsample)
|
||||
|
||||
out_channels *= 2
|
||||
|
||||
for _ in range(num_mods):
|
||||
cell = Cell(spec, in_channels, out_channels, bn=bn)
|
||||
self.layers.append(cell)
|
||||
in_channels = out_channels
|
||||
|
||||
self.classifier = nn.Linear(out_channels, num_classes)
|
||||
|
||||
self._initialize_weights()
|
||||
|
||||
def forward(self, x):
|
||||
for _, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
out = torch.mean(x, (2, 3))
|
||||
out = self.classifier(out)
|
||||
|
||||
return out
|
||||
|
||||
def get_prunable_copy(self, bn=False):
|
||||
|
||||
model_new = Network(self.spec, self.stem_out, self.num_stacks, self.num_mods, self.num_classes, bn=bn)
|
||||
|
||||
#TODO this is quite brittle and doesn't work with nn.Sequential when bn is different
|
||||
# it is only required to maintain initialization -- maybe init after get_punable_copy?
|
||||
model_new.load_state_dict(self.state_dict(), strict=False)
|
||||
model_new.train()
|
||||
|
||||
return model_new
|
||||
|
||||
def _initialize_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.data.normal_(0, math.sqrt(2.0 / n))
|
||||
if m.bias is not None:
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.Linear):
|
||||
n = m.weight.size(1)
|
||||
m.weight.data.normal_(0, 0.01)
|
||||
m.bias.data.zero_()
|
||||
|
||||
class Cell(nn.Module):
|
||||
"""
|
||||
Builds the model using the adjacency matrix and op labels specified. Channels
|
||||
controls the module output channel count but the interior channels are
|
||||
determined via equally splitting the channel count whenever there is a
|
||||
concatenation of Tensors.
|
||||
"""
|
||||
def __init__(self, spec, in_channels, out_channels, bn=True):
|
||||
super(Cell, self).__init__()
|
||||
|
||||
self.spec = spec
|
||||
self.num_vertices = np.shape(self.spec.matrix)[0]
|
||||
|
||||
# vertex_channels[i] = number of output channels of vertex i
|
||||
self.vertex_channels = ComputeVertexChannels(in_channels, out_channels, self.spec.matrix)
|
||||
#self.vertex_channels = [in_channels] + [out_channels] * (self.num_vertices - 1)
|
||||
|
||||
# operation for each node
|
||||
self.vertex_op = nn.ModuleList([None])
|
||||
for t in range(1, self.num_vertices-1):
|
||||
op = OP_MAP[spec.ops[t]](self.vertex_channels[t], self.vertex_channels[t], bn=bn)
|
||||
self.vertex_op.append(op)
|
||||
|
||||
# operation for input on each vertex
|
||||
self.input_op = nn.ModuleList([None])
|
||||
for t in range(1, self.num_vertices):
|
||||
if self.spec.matrix[0, t]:
|
||||
self.input_op.append(Projection(in_channels, self.vertex_channels[t], bn=bn))
|
||||
else:
|
||||
self.input_op.append(None)
|
||||
|
||||
def forward(self, x):
|
||||
tensors = [x]
|
||||
|
||||
out_concat = []
|
||||
for t in range(1, self.num_vertices-1):
|
||||
fan_in = [Truncate(tensors[src], self.vertex_channels[t]) for src in range(1, t) if self.spec.matrix[src, t]]
|
||||
|
||||
if self.spec.matrix[0, t]:
|
||||
fan_in.append(self.input_op[t](x))
|
||||
|
||||
# perform operation on node
|
||||
#vertex_input = torch.stack(fan_in, dim=0).sum(dim=0)
|
||||
vertex_input = sum(fan_in)
|
||||
#vertex_input = sum(fan_in) / len(fan_in)
|
||||
vertex_output = self.vertex_op[t](vertex_input)
|
||||
|
||||
tensors.append(vertex_output)
|
||||
if self.spec.matrix[t, self.num_vertices-1]:
|
||||
out_concat.append(tensors[t])
|
||||
|
||||
if not out_concat:
|
||||
assert self.spec.matrix[0, self.num_vertices-1]
|
||||
outputs = self.input_op[self.num_vertices-1](tensors[0])
|
||||
else:
|
||||
if len(out_concat) == 1:
|
||||
outputs = out_concat[0]
|
||||
else:
|
||||
outputs = torch.cat(out_concat, 1)
|
||||
|
||||
if self.spec.matrix[0, self.num_vertices-1]:
|
||||
outputs += self.input_op[self.num_vertices-1](tensors[0])
|
||||
|
||||
#if self.spec.matrix[0, self.num_vertices-1]:
|
||||
# out_concat.append(self.input_op[self.num_vertices-1](tensors[0]))
|
||||
#outputs = sum(out_concat) / len(out_concat)
|
||||
|
||||
return outputs
|
||||
|
||||
def Projection(in_channels, out_channels, bn=True):
|
||||
"""1x1 projection (as in ResNet) followed by batch normalization and ReLU."""
|
||||
return ConvBnRelu(in_channels, out_channels, 1, bn=bn)
|
||||
|
||||
def Truncate(inputs, channels):
|
||||
"""Slice the inputs to channels if necessary."""
|
||||
input_channels = inputs.size()[1]
|
||||
if input_channels < channels:
|
||||
raise ValueError('input channel < output channels for truncate')
|
||||
elif input_channels == channels:
|
||||
return inputs # No truncation necessary
|
||||
else:
|
||||
# Truncation should only be necessary when channel division leads to
|
||||
# vertices with +1 channels. The input vertex should always be projected to
|
||||
# the minimum channel count.
|
||||
assert input_channels - channels == 1
|
||||
return inputs[:, :channels, :, :]
|
||||
|
||||
def ComputeVertexChannels(in_channels, out_channels, matrix):
|
||||
"""Computes the number of channels at every vertex.
|
||||
Given the input channels and output channels, this calculates the number of
|
||||
channels at each interior vertex. Interior vertices have the same number of
|
||||
channels as the max of the channels of the vertices it feeds into. The output
|
||||
channels are divided amongst the vertices that are directly connected to it.
|
||||
When the division is not even, some vertices may receive an extra channel to
|
||||
compensate.
|
||||
Returns:
|
||||
list of channel counts, in order of the vertices.
|
||||
"""
|
||||
num_vertices = np.shape(matrix)[0]
|
||||
|
||||
vertex_channels = [0] * num_vertices
|
||||
vertex_channels[0] = in_channels
|
||||
vertex_channels[num_vertices - 1] = out_channels
|
||||
|
||||
if num_vertices == 2:
|
||||
# Edge case where module only has input and output vertices
|
||||
return vertex_channels
|
||||
|
||||
# Compute the in-degree ignoring input, axis 0 is the src vertex and axis 1 is
|
||||
# the dst vertex. Summing over 0 gives the in-degree count of each vertex.
|
||||
in_degree = np.sum(matrix[1:], axis=0)
|
||||
interior_channels = out_channels // in_degree[num_vertices - 1]
|
||||
correction = out_channels % in_degree[num_vertices - 1] # Remainder to add
|
||||
|
||||
# Set channels of vertices that flow directly to output
|
||||
for v in range(1, num_vertices - 1):
|
||||
if matrix[v, num_vertices - 1]:
|
||||
vertex_channels[v] = interior_channels
|
||||
if correction:
|
||||
vertex_channels[v] += 1
|
||||
correction -= 1
|
||||
|
||||
# Set channels for all other vertices to the max of the out edges, going
|
||||
# backwards. (num_vertices - 2) index skipped because it only connects to
|
||||
# output.
|
||||
for v in range(num_vertices - 3, 0, -1):
|
||||
if not matrix[v, num_vertices - 1]:
|
||||
for dst in range(v + 1, num_vertices - 1):
|
||||
if matrix[v, dst]:
|
||||
vertex_channels[v] = max(vertex_channels[v], vertex_channels[dst])
|
||||
assert vertex_channels[v] > 0
|
||||
|
||||
# Sanity check, verify that channels never increase and final channels add up.
|
||||
final_fan_in = 0
|
||||
for v in range(1, num_vertices - 1):
|
||||
if matrix[v, num_vertices - 1]:
|
||||
final_fan_in += vertex_channels[v]
|
||||
for dst in range(v + 1, num_vertices - 1):
|
||||
if matrix[v, dst]:
|
||||
assert vertex_channels[v] >= vertex_channels[dst]
|
||||
assert final_fan_in == out_channels or num_vertices == 2
|
||||
# num_vertices == 2 means only input/output nodes, so 0 fan-in
|
||||
|
||||
return vertex_channels
|
||||
83
correlation/foresight/models/nasbench1_ops.py
Normal file
83
correlation/foresight/models/nasbench1_ops.py
Normal file
@@ -0,0 +1,83 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
"""Base operations used by the modules in this search space."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class ConvBnRelu(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, bn=True):
|
||||
super(ConvBnRelu, self).__init__()
|
||||
|
||||
if bn:
|
||||
self.conv_bn_relu = nn.Sequential(
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
nn.ReLU(inplace=False)
|
||||
)
|
||||
else:
|
||||
self.conv_bn_relu = nn.Sequential(
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
|
||||
nn.ReLU(inplace=False)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv_bn_relu(x)
|
||||
|
||||
class Conv3x3BnRelu(nn.Module):
|
||||
"""3x3 convolution with batch norm and ReLU activation."""
|
||||
def __init__(self, in_channels, out_channels, bn=True):
|
||||
super(Conv3x3BnRelu, self).__init__()
|
||||
|
||||
self.conv3x3 = ConvBnRelu(in_channels, out_channels, 3, 1, 1, bn=bn)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv3x3(x)
|
||||
return x
|
||||
|
||||
class Conv1x1BnRelu(nn.Module):
|
||||
"""1x1 convolution with batch norm and ReLU activation."""
|
||||
def __init__(self, in_channels, out_channels, bn=True):
|
||||
super(Conv1x1BnRelu, self).__init__()
|
||||
|
||||
self.conv1x1 = ConvBnRelu(in_channels, out_channels, 1, 1, 0, bn=bn)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1x1(x)
|
||||
return x
|
||||
|
||||
class MaxPool3x3(nn.Module):
|
||||
"""3x3 max pool with no subsampling."""
|
||||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bn=None):
|
||||
super(MaxPool3x3, self).__init__()
|
||||
|
||||
self.maxpool = nn.MaxPool2d(kernel_size, stride, padding)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.maxpool(x)
|
||||
return x
|
||||
|
||||
# Commas should not be used in op names
|
||||
OP_MAP = {
|
||||
'conv3x3-bn-relu': Conv3x3BnRelu,
|
||||
'conv1x1-bn-relu': Conv1x1BnRelu,
|
||||
'maxpool3x3': MaxPool3x3
|
||||
}
|
||||
295
correlation/foresight/models/nasbench1_spec.py
Normal file
295
correlation/foresight/models/nasbench1_spec.py
Normal file
@@ -0,0 +1,295 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
"""Model specification for module connectivity individuals.
|
||||
This module handles pruning the unused parts of the computation graph but should
|
||||
avoid creating any TensorFlow models (this is done inside model_builder.py).
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import copy
|
||||
import hashlib
|
||||
import itertools
|
||||
import numpy as np
|
||||
|
||||
|
||||
# Graphviz is optional and only required for visualization.
|
||||
try:
|
||||
import graphviz # pylint: disable=g-import-not-at-top
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
def _ToModelSpec(mat, ops):
|
||||
return ModelSpec(mat, ops)
|
||||
|
||||
def gen_is_edge_fn(bits):
|
||||
"""Generate a boolean function for the edge connectivity.
|
||||
Given a bitstring FEDCBA and a 4x4 matrix, the generated matrix is
|
||||
[[0, A, B, D],
|
||||
[0, 0, C, E],
|
||||
[0, 0, 0, F],
|
||||
[0, 0, 0, 0]]
|
||||
Note that this function is agnostic to the actual matrix dimension due to
|
||||
order in which elements are filled out (column-major, starting from least
|
||||
significant bit). For example, the same FEDCBA bitstring (0-padded) on a 5x5
|
||||
matrix is
|
||||
[[0, A, B, D, 0],
|
||||
[0, 0, C, E, 0],
|
||||
[0, 0, 0, F, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]]
|
||||
Args:
|
||||
bits: integer which will be interpreted as a bit mask.
|
||||
Returns:
|
||||
vectorized function that returns True when an edge is present.
|
||||
"""
|
||||
def is_edge(x, y):
|
||||
"""Is there an edge from x to y (0-indexed)?"""
|
||||
if x >= y:
|
||||
return 0
|
||||
# Map x, y to index into bit string
|
||||
index = x + (y * (y - 1) // 2)
|
||||
return (bits >> index) % 2 == 1
|
||||
|
||||
return np.vectorize(is_edge)
|
||||
|
||||
|
||||
def is_full_dag(matrix):
|
||||
"""Full DAG == all vertices on a path from vert 0 to (V-1).
|
||||
i.e. no disconnected or "hanging" vertices.
|
||||
It is sufficient to check for:
|
||||
1) no rows of 0 except for row V-1 (only output vertex has no out-edges)
|
||||
2) no cols of 0 except for col 0 (only input vertex has no in-edges)
|
||||
Args:
|
||||
matrix: V x V upper-triangular adjacency matrix
|
||||
Returns:
|
||||
True if the there are no dangling vertices.
|
||||
"""
|
||||
shape = np.shape(matrix)
|
||||
|
||||
rows = matrix[:shape[0]-1, :] == 0
|
||||
rows = np.all(rows, axis=1) # Any row with all 0 will be True
|
||||
rows_bad = np.any(rows)
|
||||
|
||||
cols = matrix[:, 1:] == 0
|
||||
cols = np.all(cols, axis=0) # Any col with all 0 will be True
|
||||
cols_bad = np.any(cols)
|
||||
|
||||
return (not rows_bad) and (not cols_bad)
|
||||
|
||||
|
||||
def num_edges(matrix):
|
||||
"""Computes number of edges in adjacency matrix."""
|
||||
return np.sum(matrix)
|
||||
|
||||
|
||||
def hash_module(matrix, labeling):
|
||||
"""Computes a graph-invariance MD5 hash of the matrix and label pair.
|
||||
Args:
|
||||
matrix: np.ndarray square upper-triangular adjacency matrix.
|
||||
labeling: list of int labels of length equal to both dimensions of
|
||||
matrix.
|
||||
Returns:
|
||||
MD5 hash of the matrix and labeling.
|
||||
"""
|
||||
vertices = np.shape(matrix)[0]
|
||||
in_edges = np.sum(matrix, axis=0).tolist()
|
||||
out_edges = np.sum(matrix, axis=1).tolist()
|
||||
|
||||
assert len(in_edges) == len(out_edges) == len(labeling)
|
||||
hashes = list(zip(out_edges, in_edges, labeling))
|
||||
hashes = [hashlib.md5(str(h).encode('utf-8')).hexdigest() for h in hashes]
|
||||
# Computing this up to the diameter is probably sufficient but since the
|
||||
# operation is fast, it is okay to repeat more times.
|
||||
for _ in range(vertices):
|
||||
new_hashes = []
|
||||
for v in range(vertices):
|
||||
in_neighbors = [hashes[w] for w in range(vertices) if matrix[w, v]]
|
||||
out_neighbors = [hashes[w] for w in range(vertices) if matrix[v, w]]
|
||||
new_hashes.append(hashlib.md5(
|
||||
(''.join(sorted(in_neighbors)) + '|' +
|
||||
''.join(sorted(out_neighbors)) + '|' +
|
||||
hashes[v]).encode('utf-8')).hexdigest())
|
||||
hashes = new_hashes
|
||||
fingerprint = hashlib.md5(str(sorted(hashes)).encode('utf-8')).hexdigest()
|
||||
|
||||
return fingerprint
|
||||
|
||||
|
||||
def permute_graph(graph, label, permutation):
|
||||
"""Permutes the graph and labels based on permutation.
|
||||
Args:
|
||||
graph: np.ndarray adjacency matrix.
|
||||
label: list of labels of same length as graph dimensions.
|
||||
permutation: a permutation list of ints of same length as graph dimensions.
|
||||
Returns:
|
||||
np.ndarray where vertex permutation[v] is vertex v from the original graph
|
||||
"""
|
||||
# vertex permutation[v] in new graph is vertex v in the old graph
|
||||
forward_perm = zip(permutation, list(range(len(permutation))))
|
||||
inverse_perm = [x[1] for x in sorted(forward_perm)]
|
||||
edge_fn = lambda x, y: graph[inverse_perm[x], inverse_perm[y]] == 1
|
||||
new_matrix = np.fromfunction(np.vectorize(edge_fn),
|
||||
(len(label), len(label)),
|
||||
dtype=np.int8)
|
||||
new_label = [label[inverse_perm[i]] for i in range(len(label))]
|
||||
return new_matrix, new_label
|
||||
|
||||
|
||||
def is_isomorphic(graph1, graph2):
|
||||
"""Exhaustively checks if 2 graphs are isomorphic."""
|
||||
matrix1, label1 = np.array(graph1[0]), graph1[1]
|
||||
matrix2, label2 = np.array(graph2[0]), graph2[1]
|
||||
assert np.shape(matrix1) == np.shape(matrix2)
|
||||
assert len(label1) == len(label2)
|
||||
|
||||
vertices = np.shape(matrix1)[0]
|
||||
# Note: input and output in our constrained graphs always map to themselves
|
||||
# but this script does not enforce that.
|
||||
for perm in itertools.permutations(range(0, vertices)):
|
||||
pmatrix1, plabel1 = permute_graph(matrix1, label1, perm)
|
||||
if np.array_equal(pmatrix1, matrix2) and plabel1 == label2:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
class ModelSpec(object):
|
||||
"""Model specification given adjacency matrix and labeling."""
|
||||
|
||||
def __init__(self, matrix, ops, data_format='channels_last'):
|
||||
"""Initialize the module spec.
|
||||
Args:
|
||||
matrix: ndarray or nested list with shape [V, V] for the adjacency matrix.
|
||||
ops: V-length list of labels for the base ops used. The first and last
|
||||
elements are ignored because they are the input and output vertices
|
||||
which have no operations. The elements are retained to keep consistent
|
||||
indexing.
|
||||
data_format: channels_last or channels_first.
|
||||
Raises:
|
||||
ValueError: invalid matrix or ops
|
||||
"""
|
||||
if not isinstance(matrix, np.ndarray):
|
||||
matrix = np.array(matrix)
|
||||
shape = np.shape(matrix)
|
||||
if len(shape) != 2 or shape[0] != shape[1]:
|
||||
raise ValueError('matrix must be square')
|
||||
if shape[0] != len(ops):
|
||||
raise ValueError('length of ops must match matrix dimensions')
|
||||
if not is_upper_triangular(matrix):
|
||||
raise ValueError('matrix must be upper triangular')
|
||||
|
||||
# Both the original and pruned matrices are deep copies of the matrix and
|
||||
# ops so any changes to those after initialization are not recognized by the
|
||||
# spec.
|
||||
self.original_matrix = copy.deepcopy(matrix)
|
||||
# print(self.original_matrix)
|
||||
self.original_ops = copy.deepcopy(ops)
|
||||
|
||||
self.matrix = copy.deepcopy(matrix)
|
||||
self.ops = copy.deepcopy(ops)
|
||||
self.valid_spec = True
|
||||
self._prune()
|
||||
|
||||
self.data_format = data_format
|
||||
|
||||
def _prune(self):
|
||||
"""Prune the extraneous parts of the graph.
|
||||
General procedure:
|
||||
1) Remove parts of graph not connected to input.
|
||||
2) Remove parts of graph not connected to output.
|
||||
3) Reorder the vertices so that they are consecutive after steps 1 and 2.
|
||||
These 3 steps can be combined by deleting the rows and columns of the
|
||||
vertices that are not reachable from both the input and output (in reverse).
|
||||
"""
|
||||
num_vertices = np.shape(self.original_matrix)[0]
|
||||
|
||||
# DFS forward from input
|
||||
visited_from_input = set([0])
|
||||
frontier = [0]
|
||||
while frontier:
|
||||
top = frontier.pop()
|
||||
for v in range(top + 1, num_vertices):
|
||||
if self.original_matrix[top, v] and v not in visited_from_input:
|
||||
visited_from_input.add(v)
|
||||
frontier.append(v)
|
||||
|
||||
# DFS backward from output
|
||||
visited_from_output = set([num_vertices - 1])
|
||||
frontier = [num_vertices - 1]
|
||||
while frontier:
|
||||
top = frontier.pop()
|
||||
for v in range(0, top):
|
||||
if self.original_matrix[v, top] and v not in visited_from_output:
|
||||
visited_from_output.add(v)
|
||||
frontier.append(v)
|
||||
|
||||
# Any vertex that isn't connected to both input and output is extraneous to
|
||||
# the computation graph.
|
||||
extraneous = set(range(num_vertices)).difference(
|
||||
visited_from_input.intersection(visited_from_output))
|
||||
|
||||
# If the non-extraneous graph is less than 2 vertices, the input is not
|
||||
# connected to the output and the spec is invalid.
|
||||
if len(extraneous) > num_vertices - 2:
|
||||
self.matrix = None
|
||||
self.ops = None
|
||||
self.valid_spec = False
|
||||
return
|
||||
|
||||
self.matrix = np.delete(self.matrix, list(extraneous), axis=0)
|
||||
self.matrix = np.delete(self.matrix, list(extraneous), axis=1)
|
||||
for index in sorted(extraneous, reverse=True):
|
||||
del self.ops[index]
|
||||
|
||||
def hash_spec(self, canonical_ops):
|
||||
"""Computes the isomorphism-invariant graph hash of this spec.
|
||||
Args:
|
||||
canonical_ops: list of operations in the canonical ordering which they
|
||||
were assigned (i.e. the order provided in the config['available_ops']).
|
||||
Returns:
|
||||
MD5 hash of this spec which can be used to query the dataset.
|
||||
"""
|
||||
# Invert the operations back to integer label indices used in graph gen.
|
||||
labeling = [-1] + [canonical_ops.index(op) for op in self.ops[1:-1]] + [-2]
|
||||
return graph_util.hash_module(self.matrix, labeling)
|
||||
|
||||
def visualize(self):
|
||||
"""Creates a dot graph. Can be visualized in colab directly."""
|
||||
num_vertices = np.shape(self.matrix)[0]
|
||||
g = graphviz.Digraph()
|
||||
g.node(str(0), 'input')
|
||||
for v in range(1, num_vertices - 1):
|
||||
g.node(str(v), self.ops[v])
|
||||
g.node(str(num_vertices - 1), 'output')
|
||||
|
||||
for src in range(num_vertices - 1):
|
||||
for dst in range(src + 1, num_vertices):
|
||||
if self.matrix[src, dst]:
|
||||
g.edge(str(src), str(dst))
|
||||
|
||||
return g
|
||||
|
||||
|
||||
def is_upper_triangular(matrix):
|
||||
"""True if matrix is 0 on diagonal and below."""
|
||||
for src in range(np.shape(matrix)[0]):
|
||||
for dst in range(0, src + 1):
|
||||
if matrix[src, dst] != 0:
|
||||
return False
|
||||
|
||||
return True
|
||||
140
correlation/foresight/models/nasbench2.py
Normal file
140
correlation/foresight/models/nasbench2.py
Normal file
@@ -0,0 +1,140 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .nasbench2_ops import *
|
||||
|
||||
|
||||
def gen_searchcell_mask_from_arch_str(arch_str):
|
||||
nodes = arch_str.split('+')
|
||||
nodes = [node[1:-1].split('|') for node in nodes]
|
||||
nodes = [[op_and_input.split('~') for op_and_input in node] for node in nodes]
|
||||
|
||||
keep_mask = []
|
||||
for curr_node_idx in range(len(nodes)):
|
||||
for prev_node_idx in range(curr_node_idx+1):
|
||||
_op = [edge[0] for edge in nodes[curr_node_idx] if int(edge[1]) == prev_node_idx]
|
||||
assert len(_op) == 1, 'The arch string does not follow the assumption of 1 connection between two nodes.'
|
||||
for _op_name in OPS.keys():
|
||||
keep_mask.append(_op[0] == _op_name)
|
||||
return keep_mask
|
||||
|
||||
|
||||
def get_model_from_arch_str(arch_str, num_classes, use_bn=True, init_channels=16):
|
||||
keep_mask = gen_searchcell_mask_from_arch_str(arch_str)
|
||||
net = NAS201Model(arch_str=arch_str, num_classes=num_classes, use_bn=use_bn, keep_mask=keep_mask, stem_ch=init_channels)
|
||||
return net
|
||||
|
||||
|
||||
def get_super_model(num_classes, use_bn=True):
|
||||
net = NAS201Model(arch_str=arch_str, num_classes=num_classes, use_bn=use_bn)
|
||||
return net
|
||||
|
||||
|
||||
class NAS201Model(nn.Module):
|
||||
|
||||
def __init__(self, arch_str, num_classes, use_bn=True, keep_mask=None, stem_ch=16):
|
||||
super(NAS201Model, self).__init__()
|
||||
self.arch_str=arch_str
|
||||
self.num_classes=num_classes
|
||||
self.use_bn= use_bn
|
||||
|
||||
self.stem = stem(out_channels=stem_ch, use_bn=use_bn)
|
||||
self.stack_cell1 = nn.Sequential(*[SearchCell(in_channels=stem_ch, out_channels=stem_ch, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)])
|
||||
self.reduction1 = reduction(in_channels=stem_ch, out_channels=stem_ch*2)
|
||||
self.stack_cell2 = nn.Sequential(*[SearchCell(in_channels=stem_ch*2, out_channels=stem_ch*2, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)])
|
||||
self.reduction2 = reduction(in_channels=stem_ch*2, out_channels=stem_ch*4)
|
||||
self.stack_cell3 = nn.Sequential(*[SearchCell(in_channels=stem_ch*4, out_channels=stem_ch*4, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)])
|
||||
# self.top = top(in_dims=stem_ch*4, num_classes=num_classes, use_bn=use_bn)
|
||||
self.top = top(in_dims=stem_ch*4, use_bn=use_bn)
|
||||
self.classifier = nn.Linear(stem_ch*4, num_classes)
|
||||
self.pre_GAP = nn.Sequential(nn.BatchNorm2d(stem_ch * 4), nn.ReLU(inplace=True))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.stem(x)
|
||||
|
||||
x = self.stack_cell1(x)
|
||||
x = self.reduction1(x)
|
||||
|
||||
x = self.stack_cell2(x)
|
||||
x = self.reduction2(x)
|
||||
|
||||
x = self.stack_cell3(x)
|
||||
|
||||
x = self.top(x)
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
def forward_pre_GAP(self, x):
|
||||
x = self.stem(x)
|
||||
|
||||
x = self.stack_cell1(x)
|
||||
x = self.reduction1(x)
|
||||
|
||||
x = self.stack_cell2(x)
|
||||
x = self.reduction2(x)
|
||||
|
||||
x = self.stack_cell3(x)
|
||||
x = self.pre_GAP(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
def get_prunable_copy(self, bn=False):
|
||||
model_new = get_model_from_arch_str(self.arch_str, self.num_classes, use_bn=bn)
|
||||
|
||||
#TODO this is quite brittle and doesn't work with nn.Sequential when bn is different
|
||||
# it is only required to maintain initialization -- maybe init after get_punable_copy?
|
||||
model_new.load_state_dict(self.state_dict(), strict=False)
|
||||
model_new.train()
|
||||
|
||||
return model_new
|
||||
|
||||
|
||||
def get_arch_str_from_model(net):
|
||||
search_cell = net.stack_cell1[0].options
|
||||
keep_mask = net.stack_cell1[0].keep_mask
|
||||
num_nodes = net.stack_cell1[0].num_nodes
|
||||
|
||||
nodes = []
|
||||
idx = 0
|
||||
for curr_node in range(num_nodes -1):
|
||||
edges = []
|
||||
for prev_node in range(curr_node+1): # n-1 prev nodes
|
||||
for _op_name in OPS.keys():
|
||||
if keep_mask[idx]:
|
||||
edges.append(f'{_op_name}~{prev_node}')
|
||||
idx += 1
|
||||
node_str = '|'.join(edges)
|
||||
node_str = f'|{node_str}|'
|
||||
nodes.append(node_str)
|
||||
arch_str = '+'.join(nodes)
|
||||
return arch_str
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
arch_str = '|nor_conv_3x3~0|+|none~0|none~1|+|avg_pool_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|'
|
||||
|
||||
n = get_model_from_arch_str(arch_str=arch_str, num_classes=10)
|
||||
print(n.stack_cell1[0])
|
||||
|
||||
arch_str2 = get_arch_str_from_model(n)
|
||||
print(arch_str)
|
||||
print(arch_str2)
|
||||
print(f'Are the two arch strings same? {arch_str == arch_str2}')
|
||||
166
correlation/foresight/models/nasbench2_ops.py
Normal file
166
correlation/foresight/models/nasbench2_ops.py
Normal file
@@ -0,0 +1,166 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class ReLUConvBN(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, affine, track_running_stats=True, use_bn=True, name='ReLUConvBN'):
|
||||
super(ReLUConvBN, self).__init__()
|
||||
self.name = name
|
||||
if use_bn:
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine),
|
||||
nn.BatchNorm2d(out_channels, affine=affine, track_running_stats=track_running_stats)
|
||||
)
|
||||
else:
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
class Identity(nn.Module):
|
||||
def __init__(self, name='Identity'):
|
||||
self.name = name
|
||||
super(Identity, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
class Zero(nn.Module):
|
||||
|
||||
def __init__(self, stride, name='Zero'):
|
||||
self.name = name
|
||||
super(Zero, self).__init__()
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
if self.stride == 1:
|
||||
return x.mul(0.)
|
||||
return x[:,:,::self.stride,::self.stride].mul(0.)
|
||||
|
||||
class POOLING(nn.Module):
|
||||
def __init__(self, kernel_size, stride, padding, name='POOLING'):
|
||||
super(POOLING, self).__init__()
|
||||
self.name = name
|
||||
self.avgpool = nn.AvgPool2d(kernel_size=kernel_size, stride=1, padding=1, count_include_pad=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.avgpool(x)
|
||||
|
||||
|
||||
class reduction(nn.Module):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super(reduction, self).__init__()
|
||||
self.residual = nn.Sequential(
|
||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, bias=False))
|
||||
|
||||
self.conv_a = ReLUConvBN(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1, dilation=1, affine=True, track_running_stats=True)
|
||||
self.conv_b = ReLUConvBN(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, dilation=1, affine=True, track_running_stats=True)
|
||||
|
||||
def forward(self, x):
|
||||
basicblock = self.conv_a(x)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
residual = self.residual(x)
|
||||
return residual + basicblock
|
||||
|
||||
class stem(nn.Module):
|
||||
def __init__(self, out_channels, use_bn=True):
|
||||
super(stem, self).__init__()
|
||||
if use_bn:
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(in_channels=3, out_channels=out_channels, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(out_channels))
|
||||
else:
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(in_channels=3, out_channels=out_channels, kernel_size=3, padding=1, bias=False)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class top(nn.Module):
|
||||
# def __init__(self, in_dims, num_classes, use_bn=True):
|
||||
def __init__(self, in_dims, use_bn=True):
|
||||
super(top, self).__init__()
|
||||
if use_bn:
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(in_dims), nn.ReLU(inplace=True))
|
||||
else:
|
||||
self.lastact = nn.ReLU(inplace=True)
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
# self.classifier = nn.Linear(in_dims, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.lastact(x)
|
||||
x = self.global_pooling(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
# logits = self.classifier(x)
|
||||
# return logits
|
||||
return x
|
||||
|
||||
|
||||
class SearchCell(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, out_channels, stride, affine, track_running_stats, use_bn=True, num_nodes=4, keep_mask=None):
|
||||
super(SearchCell, self).__init__()
|
||||
self.num_nodes = num_nodes
|
||||
self.options = nn.ModuleList()
|
||||
for curr_node in range(self.num_nodes-1):
|
||||
for prev_node in range(curr_node+1):
|
||||
for _op_name in OPS.keys():
|
||||
op = OPS[_op_name](in_channels, out_channels, stride, affine, track_running_stats, use_bn)
|
||||
self.options.append(op)
|
||||
|
||||
if keep_mask is not None:
|
||||
self.keep_mask = keep_mask
|
||||
else:
|
||||
self.keep_mask = [True]*len(self.options)
|
||||
|
||||
def forward(self, x):
|
||||
outs = [x]
|
||||
|
||||
idx = 0
|
||||
for curr_node in range(self.num_nodes-1):
|
||||
edges_in = []
|
||||
for prev_node in range(curr_node+1): # n-1 prev nodes
|
||||
for op_idx in range(len(OPS.keys())):
|
||||
if self.keep_mask[idx]:
|
||||
edges_in.append(self.options[idx](outs[prev_node]))
|
||||
idx += 1
|
||||
node_output = sum(edges_in)
|
||||
outs.append(node_output)
|
||||
|
||||
return outs[-1]
|
||||
|
||||
|
||||
|
||||
OPS = {
|
||||
'none' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: Zero(stride, name='none'),
|
||||
'avg_pool_3x3' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: POOLING(3, 1, 1, name='avg_pool_3x3'),
|
||||
'nor_conv_3x3' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: ReLUConvBN(in_channels, out_channels, 3, 1, 1, 1, affine, track_running_stats, use_bn, name='nor_conv_3x3'),
|
||||
'nor_conv_1x1' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: ReLUConvBN(in_channels, out_channels, 1, 1, 0, 1, affine, track_running_stats, use_bn, name='nor_conv_1x1'),
|
||||
'skip_connect' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: Identity(name='skip_connect'),
|
||||
}
|
||||
|
||||
|
||||
19
correlation/foresight/pruners/__init__.py
Normal file
19
correlation/foresight/pruners/__init__.py
Normal file
@@ -0,0 +1,19 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
from os.path import dirname, basename, isfile, join
|
||||
import glob
|
||||
modules = glob.glob(join(dirname(__file__), "*.py"))
|
||||
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
||||
69
correlation/foresight/pruners/measures/__init__.py
Normal file
69
correlation/foresight/pruners/measures/__init__.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
|
||||
available_measures = []
|
||||
_measure_impls = {}
|
||||
|
||||
|
||||
def measure(name, bn=True, copy_net=True, force_clean=True, **impl_args):
|
||||
def make_impl(func):
|
||||
def measure_impl(net_orig, device, *args, **kwargs):
|
||||
if copy_net:
|
||||
net = net_orig.get_prunable_copy(bn=bn).to(device)
|
||||
else:
|
||||
net = net_orig
|
||||
ret = func(net, *args, **kwargs, **impl_args)
|
||||
if copy_net and force_clean:
|
||||
import gc
|
||||
import torch
|
||||
del net
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
return ret
|
||||
|
||||
global _measure_impls
|
||||
if name in _measure_impls:
|
||||
raise KeyError(f'Duplicated measure! {name}')
|
||||
available_measures.append(name)
|
||||
_measure_impls[name] = measure_impl
|
||||
return func
|
||||
return make_impl
|
||||
|
||||
|
||||
def calc_measure(name, net, device, *args, **kwargs):
|
||||
return _measure_impls[name](net, device, *args, **kwargs)
|
||||
|
||||
|
||||
def load_all():
|
||||
# from . import grad_norm
|
||||
# from . import snip
|
||||
# from . import grasp
|
||||
# from . import fisher
|
||||
# from . import jacob_cov
|
||||
# from . import plain
|
||||
# from . import synflow
|
||||
# from . import var
|
||||
# from . import cor
|
||||
# from . import norm
|
||||
from . import meco
|
||||
# from . import zico
|
||||
# from . import gradsign
|
||||
# from . import ntk
|
||||
# from . import zen
|
||||
|
||||
|
||||
# TODO: should we do that by default?
|
||||
load_all()
|
||||
53
correlation/foresight/pruners/measures/cor.py
Normal file
53
correlation/foresight/pruners/measures/cor.py
Normal file
@@ -0,0 +1,53 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
def forward_hook(module, data_input, data_output):
|
||||
corr = np.mean(np.corrcoef(data_input[0].detach().cpu().numpy()))
|
||||
result_list.append(corr)
|
||||
net.classifier.register_forward_hook(forward_hook)
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
cor = result_list[0].item()
|
||||
result_list.clear()
|
||||
return cor
|
||||
|
||||
|
||||
|
||||
@measure('cor', bn=True)
|
||||
def compute_norm(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
try:
|
||||
cor= get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
cor= np.nan
|
||||
|
||||
return cor
|
||||
67
correlation/foresight/pruners/measures/cova.py
Normal file
67
correlation/foresight/pruners/measures/cova.py
Normal file
@@ -0,0 +1,67 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import copy
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
result_t = []
|
||||
def forward_hook(module, data_input, data_output):
|
||||
s = time.time()
|
||||
fea = data_output[0].detach().cpu().numpy()
|
||||
fea = fea.reshape(fea.shape[0], -1)
|
||||
result = 1 / np.var(np.corrcoef(fea))
|
||||
e = time.time()
|
||||
t = e - s
|
||||
result_list.append(result)
|
||||
result_t.append(t)
|
||||
for name, modules in net.named_modules():
|
||||
modules.register_forward_hook(forward_hook)
|
||||
|
||||
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
results = np.array(result_list)
|
||||
results = results[np.logical_not(np.isnan(results))]
|
||||
v = np.sum(results)
|
||||
t = sum(result_t)
|
||||
result_list.clear()
|
||||
result_t.clear()
|
||||
return v, t
|
||||
|
||||
|
||||
|
||||
@measure('cova', bn=True)
|
||||
def compute_cova(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
try:
|
||||
cova, t = get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
cova, t = np.nan, None
|
||||
return cova, t
|
||||
107
correlation/foresight/pruners/measures/fisher.py
Normal file
107
correlation/foresight/pruners/measures/fisher.py
Normal file
@@ -0,0 +1,107 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import types
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array, reshape_elements
|
||||
|
||||
|
||||
def fisher_forward_conv2d(self, x):
|
||||
x = F.conv2d(x, self.weight, self.bias, self.stride,
|
||||
self.padding, self.dilation, self.groups)
|
||||
#intercept and store the activations after passing through 'hooked' identity op
|
||||
self.act = self.dummy(x)
|
||||
return self.act
|
||||
|
||||
def fisher_forward_linear(self, x):
|
||||
x = F.linear(x, self.weight, self.bias)
|
||||
self.act = self.dummy(x)
|
||||
return self.act
|
||||
|
||||
@measure('fisher', bn=True, mode='channel')
|
||||
def compute_fisher_per_weight(net, inputs, targets, loss_fn, mode, split_data=1):
|
||||
|
||||
device = inputs.device
|
||||
|
||||
if mode == 'param':
|
||||
raise ValueError('Fisher pruning does not support parameter pruning.')
|
||||
|
||||
net.train()
|
||||
all_hooks = []
|
||||
for layer in net.modules():
|
||||
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
|
||||
#variables/op needed for fisher computation
|
||||
layer.fisher = None
|
||||
layer.act = 0.
|
||||
layer.dummy = nn.Identity()
|
||||
|
||||
#replace forward method of conv/linear
|
||||
if isinstance(layer, nn.Conv2d):
|
||||
layer.forward = types.MethodType(fisher_forward_conv2d, layer)
|
||||
if isinstance(layer, nn.Linear):
|
||||
layer.forward = types.MethodType(fisher_forward_linear, layer)
|
||||
|
||||
#function to call during backward pass (hooked on identity op at output of layer)
|
||||
def hook_factory(layer):
|
||||
def hook(module, grad_input, grad_output):
|
||||
act = layer.act.detach()
|
||||
grad = grad_output[0].detach()
|
||||
if len(act.shape) > 2:
|
||||
g_nk = torch.sum((act * grad), list(range(2,len(act.shape))))
|
||||
else:
|
||||
g_nk = act * grad
|
||||
del_k = g_nk.pow(2).mean(0).mul(0.5)
|
||||
if layer.fisher is None:
|
||||
layer.fisher = del_k
|
||||
else:
|
||||
layer.fisher += del_k
|
||||
del layer.act #without deleting this, a nasty memory leak occurs! related: https://discuss.pytorch.org/t/memory-leak-when-using-forward-hook-and-backward-hook-simultaneously/27555
|
||||
return hook
|
||||
|
||||
#register backward hook on identity fcn to compute fisher info
|
||||
layer.dummy.register_backward_hook(hook_factory(layer))
|
||||
|
||||
N = inputs.shape[0]
|
||||
for sp in range(split_data):
|
||||
st=sp*N//split_data
|
||||
en=(sp+1)*N//split_data
|
||||
|
||||
net.zero_grad()
|
||||
outputs = net(inputs[st:en])
|
||||
loss = loss_fn(outputs, targets[st:en])
|
||||
loss.backward()
|
||||
|
||||
# retrieve fisher info
|
||||
def fisher(layer):
|
||||
if layer.fisher is not None:
|
||||
return torch.abs(layer.fisher.detach())
|
||||
else:
|
||||
return torch.zeros(layer.weight.shape[0]) #size=ch
|
||||
|
||||
grads_abs_ch = get_layer_metric_array(net, fisher, mode)
|
||||
|
||||
#broadcast channel value here to all parameters in that channel
|
||||
#to be compatible with stuff downstream (which expects per-parameter metrics)
|
||||
#TODO cleanup on the selectors/apply_prune_mask side (?)
|
||||
shapes = get_layer_metric_array(net, lambda l : l.weight.shape[1:], mode)
|
||||
|
||||
grads_abs = reshape_elements(grads_abs_ch, shapes, device)
|
||||
|
||||
return grads_abs
|
||||
38
correlation/foresight/pruners/measures/grad_norm.py
Normal file
38
correlation/foresight/pruners/measures/grad_norm.py
Normal file
@@ -0,0 +1,38 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import copy
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
@measure('grad_norm', bn=True)
|
||||
def get_grad_norm_arr(net, inputs, targets, loss_fn, split_data=1, skip_grad=False):
|
||||
net.zero_grad()
|
||||
N = inputs.shape[0]
|
||||
for sp in range(split_data):
|
||||
st=sp*N//split_data
|
||||
en=(sp+1)*N//split_data
|
||||
|
||||
outputs = net.forward(inputs[st:en])
|
||||
loss = loss_fn(outputs, targets[st:en])
|
||||
loss.backward()
|
||||
|
||||
grad_norm_arr = get_layer_metric_array(net, lambda l: l.weight.grad.norm() if l.weight.grad is not None else torch.zeros_like(l.weight), mode='param')
|
||||
|
||||
return grad_norm_arr
|
||||
76
correlation/foresight/pruners/measures/gradsign.py
Normal file
76
correlation/foresight/pruners/measures/gradsign.py
Normal file
@@ -0,0 +1,76 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_flattened_metric(net, metric):
|
||||
grad_list = []
|
||||
for layer in net.modules():
|
||||
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
|
||||
grad_list.append(metric(layer).flatten())
|
||||
flattened_grad = np.concatenate(grad_list)
|
||||
|
||||
return flattened_grad
|
||||
|
||||
|
||||
def get_grad_conflict(net, inputs, targets, loss_fn):
|
||||
N = inputs.shape[0]
|
||||
batch_grad = []
|
||||
for i in range(N):
|
||||
net.zero_grad()
|
||||
outputs = net.forward(inputs[[i]])
|
||||
loss = loss_fn(outputs, targets[[i]])
|
||||
loss.backward()
|
||||
flattened_grad = get_flattened_metric(net, lambda
|
||||
l: l.weight.grad.data.clone().cpu().numpy() if l.weight.grad is not None else torch.zeros_like(
|
||||
l.weight).clone().cpu().numpy())
|
||||
batch_grad.append(flattened_grad)
|
||||
batch_grad = np.stack(batch_grad)
|
||||
direction_code = np.sign(batch_grad)
|
||||
direction_code = abs(direction_code.sum(axis=0))
|
||||
score = np.nansum(direction_code)
|
||||
return score
|
||||
|
||||
|
||||
def get_gradsign(input, target, net, device, loss_fn):
|
||||
s = []
|
||||
net = net.to(device)
|
||||
x, target = input, target
|
||||
# x2 = torch.clone(x)
|
||||
# x2 = x2.to(device)
|
||||
x, target = x.to(device), target.to(device)
|
||||
s.append(get_grad_conflict(net=net, inputs=x, targets=target, loss_fn=loss_fn))
|
||||
s = np.mean(s)
|
||||
return s
|
||||
|
||||
@measure('gradsign', bn=True)
|
||||
def compute_gradsign(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
|
||||
try:
|
||||
gradsign = get_gradsign(inputs, targets, net, device, loss_fn)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
gradsign= np.nan
|
||||
|
||||
return gradsign
|
||||
87
correlation/foresight/pruners/measures/grasp.py
Normal file
87
correlation/foresight/pruners/measures/grasp.py
Normal file
@@ -0,0 +1,87 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.autograd as autograd
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
|
||||
@measure('grasp', bn=True, mode='param')
|
||||
def compute_grasp_per_weight(net, inputs, targets, mode, loss_fn, T=1, num_iters=1, split_data=1):
|
||||
|
||||
# get all applicable weights
|
||||
weights = []
|
||||
for layer in net.modules():
|
||||
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
|
||||
weights.append(layer.weight)
|
||||
layer.weight.requires_grad_(True) # TODO isn't this already true?
|
||||
|
||||
# NOTE original code had some input/target splitting into 2
|
||||
# I am guessing this was because of GPU mem limit
|
||||
net.zero_grad()
|
||||
N = inputs.shape[0]
|
||||
for sp in range(split_data):
|
||||
st=sp*N//split_data
|
||||
en=(sp+1)*N//split_data
|
||||
|
||||
#forward/grad pass #1
|
||||
grad_w = None
|
||||
for _ in range(num_iters):
|
||||
#TODO get new data, otherwise num_iters is useless!
|
||||
outputs = net.forward(inputs[st:en])/T
|
||||
loss = loss_fn(outputs, targets[st:en])
|
||||
grad_w_p = autograd.grad(loss, weights, allow_unused=True)
|
||||
if grad_w is None:
|
||||
grad_w = list(grad_w_p)
|
||||
else:
|
||||
for idx in range(len(grad_w)):
|
||||
grad_w[idx] += grad_w_p[idx]
|
||||
|
||||
|
||||
for sp in range(split_data):
|
||||
st=sp*N//split_data
|
||||
en=(sp+1)*N//split_data
|
||||
|
||||
# forward/grad pass #2
|
||||
outputs = net.forward(inputs[st:en])/T
|
||||
loss = loss_fn(outputs, targets[st:en])
|
||||
grad_f = autograd.grad(loss, weights, create_graph=True, allow_unused=True)
|
||||
|
||||
# accumulate gradients computed in previous step and call backwards
|
||||
z, count = 0,0
|
||||
for layer in net.modules():
|
||||
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
|
||||
if grad_w[count] is not None:
|
||||
z += (grad_w[count].data * grad_f[count]).sum()
|
||||
count += 1
|
||||
z.backward()
|
||||
|
||||
# compute final sensitivity metric and put in grads
|
||||
def grasp(layer):
|
||||
if layer.weight.grad is not None:
|
||||
return -layer.weight.data * layer.weight.grad # -theta_q Hg
|
||||
#NOTE in the grasp code they take the *bottom* (1-p)% of values
|
||||
#but we take the *top* (1-p)%, therefore we remove the -ve sign
|
||||
#EDIT accuracy seems to be negatively correlated with this metric, so we add -ve sign here!
|
||||
else:
|
||||
return torch.zeros_like(layer.weight)
|
||||
|
||||
grads = get_layer_metric_array(net, grasp, mode)
|
||||
|
||||
return grads
|
||||
57
correlation/foresight/pruners/measures/jacob_cov.py
Normal file
57
correlation/foresight/pruners/measures/jacob_cov.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_batch_jacobian(net, x, target, device, split_data):
|
||||
x.requires_grad_(True)
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st=sp*N//split_data
|
||||
en=(sp+1)*N//split_data
|
||||
y = net(x[st:en])
|
||||
y.backward(torch.ones_like(y))
|
||||
|
||||
jacob = x.grad.detach()
|
||||
x.requires_grad_(False)
|
||||
return jacob, target.detach()
|
||||
|
||||
def eval_score(jacob, labels=None):
|
||||
corrs = np.corrcoef(jacob)
|
||||
v, _ = np.linalg.eig(corrs)
|
||||
k = 1e-5
|
||||
return -np.sum(np.log(v + k) + 1./(v + k))
|
||||
|
||||
@measure('jacob_cov', bn=True)
|
||||
def compute_jacob_cov(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
jacobs, labels = get_batch_jacobian(net, inputs, targets, device, split_data=split_data)
|
||||
jacobs = jacobs.reshape(jacobs.size(0), -1).cpu().numpy()
|
||||
|
||||
try:
|
||||
jc = eval_score(jacobs, labels)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
jc = np.nan
|
||||
|
||||
return jc
|
||||
22
correlation/foresight/pruners/measures/l2_norm.py
Normal file
22
correlation/foresight/pruners/measures/l2_norm.py
Normal file
@@ -0,0 +1,22 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
|
||||
@measure('l2_norm', copy_net=False, mode='param')
|
||||
def get_l2_norm_array(net, inputs, targets, mode, split_data=1):
|
||||
return get_layer_metric_array(net, lambda l: l.weight.norm(), mode=mode)
|
||||
63
correlation/foresight/pruners/measures/mean.py
Normal file
63
correlation/foresight/pruners/measures/mean.py
Normal file
@@ -0,0 +1,63 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
def forward_hook(module, data_input, data_output):
|
||||
s = time.time()
|
||||
mean = torch.mean(data_input[0])
|
||||
e = time.time()
|
||||
t = e - s
|
||||
result_list.append(mean)
|
||||
result_list.append(t)
|
||||
net.classifier.register_forward_hook(forward_hook)
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
# t1 = time.time()
|
||||
y = net(x[st:en])
|
||||
# t2 = time.time()
|
||||
# print('var:', t2-t1)
|
||||
m = result_list[0].item()
|
||||
t = result_list[1]
|
||||
result_list.clear()
|
||||
return m, t
|
||||
|
||||
|
||||
|
||||
@measure('mean', bn=True)
|
||||
def compute_mean(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
# print('var:', features.shape)
|
||||
try:
|
||||
mean, t = get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
mean, t = np.nan, None
|
||||
# print(jc)
|
||||
# print(f'var time: {t} s')
|
||||
return mean, t
|
||||
73
correlation/foresight/pruners/measures/meco.py
Normal file
73
correlation/foresight/pruners/measures/meco.py
Normal file
@@ -0,0 +1,73 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import copy
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
x = torch.randn(size=(1, 3, 64, 64)).to(device)
|
||||
net.to(device)
|
||||
def forward_hook(module, data_input, data_output):
|
||||
|
||||
fea = data_output[0].detach()
|
||||
fea = fea.reshape(fea.shape[0], -1)
|
||||
n = fea.shape[0]
|
||||
corr = torch.corrcoef(fea)
|
||||
corr[torch.isnan(corr)] = 0
|
||||
corr[torch.isinf(corr)] = 0
|
||||
values = torch.linalg.eig(corr)[0]
|
||||
# result = np.real(np.min(values)) / np.real(np.max(values))
|
||||
result = torch.min(torch.real(values))
|
||||
result_list.append(result)
|
||||
|
||||
for name, modules in net.named_modules():
|
||||
modules.register_forward_hook(forward_hook)
|
||||
|
||||
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
# break
|
||||
results = torch.tensor(result_list)
|
||||
results = results[torch.logical_not(torch.isnan(results))]
|
||||
v = torch.sum(results)
|
||||
result_list.clear()
|
||||
return v.item()
|
||||
|
||||
|
||||
|
||||
@measure('meco', bn=True)
|
||||
def compute_meco(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
|
||||
try:
|
||||
meco = get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
meco = np.nan, None
|
||||
return meco
|
||||
55
correlation/foresight/pruners/measures/norm.py
Normal file
55
correlation/foresight/pruners/measures/norm.py
Normal file
@@ -0,0 +1,55 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
def forward_hook(module, data_input, data_output):
|
||||
norm = torch.norm(data_input[0])
|
||||
result_list.append(norm)
|
||||
net.classifier.register_forward_hook(forward_hook)
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
n = result_list[0].item()
|
||||
result_list.clear()
|
||||
return n
|
||||
|
||||
|
||||
|
||||
@measure('norm', bn=True)
|
||||
def compute_norm(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
# print('var:', feature.shape)
|
||||
try:
|
||||
norm, t = get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
norm, t = np.nan, None
|
||||
# print(jc)
|
||||
# print(f'norm time: {t} s')
|
||||
return norm, t
|
||||
94
correlation/foresight/pruners/measures/ntk.py
Normal file
94
correlation/foresight/pruners/measures/ntk.py
Normal file
@@ -0,0 +1,94 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def recal_bn(network, inputs, targets, recalbn, device):
|
||||
for m in network.modules():
|
||||
if isinstance(m, torch.nn.BatchNorm2d):
|
||||
m.running_mean.data.fill_(0)
|
||||
m.running_var.data.fill_(0)
|
||||
m.num_batches_tracked.data.zero_()
|
||||
m.momentum = None
|
||||
network.train()
|
||||
with torch.no_grad():
|
||||
for i, (inputs, targets) in enumerate(zip(inputs, targets)):
|
||||
if i >= recalbn: break
|
||||
inputs = inputs.cuda(device=device, non_blocking=True)
|
||||
_, _ = network(inputs)
|
||||
return network
|
||||
|
||||
|
||||
def get_ntk_n(inputs, targets, network, device, recalbn=0, train_mode=False, num_batch=1):
|
||||
device = device
|
||||
# if recalbn > 0:
|
||||
# network = recal_bn(network, xloader, recalbn, device)
|
||||
# if network_2 is not None:
|
||||
# network_2 = recal_bn(network_2, xloader, recalbn, device)
|
||||
network.eval()
|
||||
networks = []
|
||||
networks.append(network)
|
||||
ntks = []
|
||||
# if train_mode:
|
||||
# networks.train()
|
||||
# else:
|
||||
# networks.eval()
|
||||
######
|
||||
grads = [[] for _ in range(len(networks))]
|
||||
for i in range(num_batch):
|
||||
if num_batch > 0 and i >= num_batch: break
|
||||
inputs = inputs.cuda(device=device, non_blocking=True)
|
||||
for net_idx, network in enumerate(networks):
|
||||
network.zero_grad()
|
||||
# print(inputs.size())
|
||||
inputs_ = inputs.clone().cuda(device=device, non_blocking=True)
|
||||
logit = network(inputs_)
|
||||
if isinstance(logit, tuple):
|
||||
logit = logit[1] # 201 networks: return features and logits
|
||||
for _idx in range(len(inputs_)):
|
||||
logit[_idx:_idx + 1].backward(torch.ones_like(logit[_idx:_idx + 1]), retain_graph=True)
|
||||
grad = []
|
||||
for name, W in network.named_parameters():
|
||||
if 'weight' in name and W.grad is not None:
|
||||
grad.append(W.grad.view(-1).detach())
|
||||
grads[net_idx].append(torch.cat(grad, -1))
|
||||
network.zero_grad()
|
||||
torch.cuda.empty_cache()
|
||||
######
|
||||
grads = [torch.stack(_grads, 0) for _grads in grads]
|
||||
ntks = [torch.einsum('nc,mc->nm', [_grads, _grads]) for _grads in grads]
|
||||
for ntk in ntks:
|
||||
eigenvalues, _ = torch.linalg.eigh(ntk) # ascending
|
||||
conds = np.nan_to_num((eigenvalues[-1] / eigenvalues[0]).item(), copy=True, nan=100000.0)
|
||||
return conds
|
||||
|
||||
@measure('ntk', bn=True)
|
||||
def compute_ntk(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
|
||||
try:
|
||||
conds = get_ntk_n(inputs, targets, net, device)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
conds= np.nan
|
||||
|
||||
return conds
|
||||
16
correlation/foresight/pruners/measures/param_count.py
Normal file
16
correlation/foresight/pruners/measures/param_count.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import time
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
|
||||
|
||||
@measure('param_count', copy_net=False, mode='param')
|
||||
def get_param_count_array(net, inputs, targets, mode, loss_fn, split_data=1):
|
||||
s = time.time()
|
||||
count = get_layer_metric_array(net, lambda l: torch.tensor(sum(p.numel() for p in l.parameters() if p.requires_grad)), mode=mode)
|
||||
e = time.time()
|
||||
t = e - s
|
||||
# print(f'param_count time: {t} s')
|
||||
return count, t
|
||||
71
correlation/foresight/pruners/measures/pearson.py
Normal file
71
correlation/foresight/pruners/measures/pearson.py
Normal file
@@ -0,0 +1,71 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import copy
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
# import pandas as pd
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
result_t = []
|
||||
def forward_hook(module, data_input, data_output):
|
||||
s = time.time()
|
||||
fea = data_output[0].detach().cpu().numpy()
|
||||
fea = fea.reshape(fea.shape[0], -1)
|
||||
# result = 1 / np.var(np.corrcoef(fea))
|
||||
result = np.var(np.corrcoef(fea))
|
||||
e = time.time()
|
||||
t = e - s
|
||||
result_list.append(result)
|
||||
result_t.append(t)
|
||||
|
||||
for name, modules in net.named_modules():
|
||||
modules.register_forward_hook(forward_hook)
|
||||
|
||||
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
# print(y)
|
||||
results = np.array(result_list)
|
||||
results = results[np.logical_not(np.isnan(results))]
|
||||
v = np.sum(results)
|
||||
t = sum(result_t)
|
||||
result_list.clear()
|
||||
result_t.clear()
|
||||
return v, t
|
||||
|
||||
|
||||
|
||||
@measure('pearson', bn=True)
|
||||
def compute_pearson(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
try:
|
||||
pearson, t = get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
pearson, t = np.nan, None
|
||||
return pearson, t
|
||||
44
correlation/foresight/pruners/measures/plain.py
Normal file
44
correlation/foresight/pruners/measures/plain.py
Normal file
@@ -0,0 +1,44 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
|
||||
@measure('plain', bn=True, mode='param')
|
||||
def compute_plain_per_weight(net, inputs, targets, mode, loss_fn, split_data=1):
|
||||
|
||||
net.zero_grad()
|
||||
N = inputs.shape[0]
|
||||
for sp in range(split_data):
|
||||
st=sp*N//split_data
|
||||
en=(sp+1)*N//split_data
|
||||
|
||||
outputs = net.forward(inputs[st:en])
|
||||
loss = loss_fn(outputs, targets[st:en])
|
||||
loss.backward()
|
||||
|
||||
# select the gradients that we want to use for search/prune
|
||||
def plain(layer):
|
||||
if layer.weight.grad is not None:
|
||||
return layer.weight.grad * layer.weight
|
||||
else:
|
||||
return torch.zeros_like(layer.weight)
|
||||
|
||||
grads_abs = get_layer_metric_array(net, plain, mode)
|
||||
return grads_abs
|
||||
69
correlation/foresight/pruners/measures/snip.py
Normal file
69
correlation/foresight/pruners/measures/snip.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import copy
|
||||
import types
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
|
||||
def snip_forward_conv2d(self, x):
|
||||
return F.conv2d(x, self.weight * self.weight_mask, self.bias,
|
||||
self.stride, self.padding, self.dilation, self.groups)
|
||||
|
||||
def snip_forward_linear(self, x):
|
||||
return F.linear(x, self.weight * self.weight_mask, self.bias)
|
||||
|
||||
@measure('snip', bn=True, mode='param')
|
||||
def compute_snip_per_weight(net, inputs, targets, mode, loss_fn, split_data=1):
|
||||
for layer in net.modules():
|
||||
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
|
||||
layer.weight_mask = nn.Parameter(torch.ones_like(layer.weight))
|
||||
layer.weight.requires_grad = False
|
||||
|
||||
# Override the forward methods:
|
||||
if isinstance(layer, nn.Conv2d):
|
||||
layer.forward = types.MethodType(snip_forward_conv2d, layer)
|
||||
|
||||
if isinstance(layer, nn.Linear):
|
||||
layer.forward = types.MethodType(snip_forward_linear, layer)
|
||||
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
N = inputs.shape[0]
|
||||
for sp in range(split_data):
|
||||
st=sp*N//split_data
|
||||
en=(sp+1)*N//split_data
|
||||
|
||||
outputs = net.forward(inputs[st:en])
|
||||
loss = loss_fn(outputs, targets[st:en])
|
||||
loss.backward()
|
||||
|
||||
# select the gradients that we want to use for search/prune
|
||||
def snip(layer):
|
||||
if layer.weight_mask.grad is not None:
|
||||
return torch.abs(layer.weight_mask.grad)
|
||||
else:
|
||||
return torch.zeros_like(layer.weight)
|
||||
|
||||
grads_abs = get_layer_metric_array(net, snip, mode)
|
||||
|
||||
return grads_abs
|
||||
69
correlation/foresight/pruners/measures/synflow.py
Normal file
69
correlation/foresight/pruners/measures/synflow.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
|
||||
@measure('synflow', bn=False, mode='param')
|
||||
@measure('synflow_bn', bn=True, mode='param')
|
||||
def compute_synflow_per_weight(net, inputs, targets, mode, split_data=1, loss_fn=None):
|
||||
|
||||
device = inputs.device
|
||||
|
||||
#convert params to their abs. Keep sign for converting it back.
|
||||
@torch.no_grad()
|
||||
def linearize(net):
|
||||
signs = {}
|
||||
for name, param in net.state_dict().items():
|
||||
signs[name] = torch.sign(param)
|
||||
param.abs_()
|
||||
return signs
|
||||
|
||||
#convert to orig values
|
||||
@torch.no_grad()
|
||||
def nonlinearize(net, signs):
|
||||
for name, param in net.state_dict().items():
|
||||
if 'weight_mask' not in name:
|
||||
param.mul_(signs[name])
|
||||
|
||||
# keep signs of all params
|
||||
signs = linearize(net)
|
||||
|
||||
# Compute gradients with input of 1s
|
||||
net.zero_grad()
|
||||
net.double()
|
||||
input_dim = list(inputs[0,:].shape)
|
||||
inputs = torch.ones([1] + input_dim).double().to(device)
|
||||
output = net.forward(inputs)
|
||||
torch.sum(output).backward()
|
||||
|
||||
# select the gradients that we want to use for search/prune
|
||||
def synflow(layer):
|
||||
if layer.weight.grad is not None:
|
||||
return torch.abs(layer.weight * layer.weight.grad)
|
||||
else:
|
||||
return torch.zeros_like(layer.weight)
|
||||
|
||||
grads_abs = get_layer_metric_array(net, synflow, mode)
|
||||
|
||||
# apply signs of all params
|
||||
nonlinearize(net, signs)
|
||||
|
||||
return grads_abs
|
||||
|
||||
|
||||
55
correlation/foresight/pruners/measures/var.py
Normal file
55
correlation/foresight/pruners/measures/var.py
Normal file
@@ -0,0 +1,55 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
def forward_hook(module, data_input, data_output):
|
||||
var = torch.var(data_input[0])
|
||||
result_list.append(var)
|
||||
net.classifier.register_forward_hook(forward_hook)
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
v = result_list[0].item()
|
||||
result_list.clear()
|
||||
return v
|
||||
|
||||
|
||||
|
||||
@measure('var', bn=True)
|
||||
def compute_var(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
# print('var:', feature.shape)
|
||||
try:
|
||||
var= get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
var= np.nan
|
||||
# print(jc)
|
||||
# print(f'var time: {t} s')
|
||||
return var
|
||||
110
correlation/foresight/pruners/measures/zen.py
Normal file
110
correlation/foresight/pruners/measures/zen.py
Normal file
@@ -0,0 +1,110 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def network_weight_gaussian_init(net: nn.Module):
|
||||
with torch.no_grad():
|
||||
for n, m in net.named_modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.normal_(m.weight)
|
||||
if hasattr(m, 'bias') and m.bias is not None:
|
||||
nn.init.zeros_(m.bias)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
try:
|
||||
nn.init.ones_(m.weight)
|
||||
nn.init.zeros_(m.bias)
|
||||
except:
|
||||
pass
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight)
|
||||
if hasattr(m, 'bias') and m.bias is not None:
|
||||
nn.init.zeros_(m.bias)
|
||||
else:
|
||||
continue
|
||||
|
||||
return net
|
||||
|
||||
|
||||
def get_zen(gpu, model, mixup_gamma=1e-2, resolution=32, batch_size=64, repeat=32,
|
||||
fp16=False):
|
||||
info = {}
|
||||
nas_score_list = []
|
||||
if gpu is not None:
|
||||
device = torch.device(gpu)
|
||||
else:
|
||||
device = torch.device('cpu')
|
||||
|
||||
if fp16:
|
||||
dtype = torch.half
|
||||
else:
|
||||
dtype = torch.float32
|
||||
|
||||
with torch.no_grad():
|
||||
for repeat_count in range(repeat):
|
||||
network_weight_gaussian_init(model)
|
||||
input = torch.randn(size=[batch_size, 3, resolution, resolution], device=device, dtype=dtype)
|
||||
input2 = torch.randn(size=[batch_size, 3, resolution, resolution], device=device, dtype=dtype)
|
||||
mixup_input = input + mixup_gamma * input2
|
||||
output = model.forward_pre_GAP(input)
|
||||
mixup_output = model.forward_pre_GAP(mixup_input)
|
||||
|
||||
nas_score = torch.sum(torch.abs(output - mixup_output), dim=[1, 2, 3])
|
||||
nas_score = torch.mean(nas_score)
|
||||
|
||||
# compute BN scaling
|
||||
log_bn_scaling_factor = 0.0
|
||||
for m in model.modules():
|
||||
if isinstance(m, nn.BatchNorm2d):
|
||||
try:
|
||||
bn_scaling_factor = torch.sqrt(torch.mean(m.running_var))
|
||||
log_bn_scaling_factor += torch.log(bn_scaling_factor)
|
||||
except:
|
||||
pass
|
||||
pass
|
||||
pass
|
||||
nas_score = torch.log(nas_score) + log_bn_scaling_factor
|
||||
nas_score_list.append(float(nas_score))
|
||||
|
||||
std_nas_score = np.std(nas_score_list)
|
||||
avg_precision = 1.96 * std_nas_score / np.sqrt(len(nas_score_list))
|
||||
avg_nas_score = np.mean(nas_score_list)
|
||||
|
||||
info = float(avg_nas_score)
|
||||
return info
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@measure('zen', bn=True)
|
||||
def compute_zen(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
|
||||
try:
|
||||
zen = get_zen(device,net)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
zen= np.nan
|
||||
|
||||
return zen
|
||||
106
correlation/foresight/pruners/measures/zico.py
Normal file
106
correlation/foresight/pruners/measures/zico.py
Normal file
@@ -0,0 +1,106 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
from torch import nn
|
||||
|
||||
from ...dataset import get_cifar_dataloaders
|
||||
|
||||
|
||||
def getgrad(model: torch.nn.Module, grad_dict: dict, step_iter=0):
|
||||
if step_iter == 0:
|
||||
for name, mod in model.named_modules():
|
||||
if isinstance(mod, nn.Conv2d) or isinstance(mod, nn.Linear):
|
||||
# print(mod.weight.grad.data.size())
|
||||
# print(mod.weight.data.size())
|
||||
try:
|
||||
grad_dict[name] = [mod.weight.grad.data.cpu().reshape(-1).numpy()]
|
||||
except:
|
||||
continue
|
||||
else:
|
||||
for name, mod in model.named_modules():
|
||||
if isinstance(mod, nn.Conv2d) or isinstance(mod, nn.Linear):
|
||||
try:
|
||||
grad_dict[name].append(mod.weight.grad.data.cpu().reshape(-1).numpy())
|
||||
except:
|
||||
continue
|
||||
return grad_dict
|
||||
|
||||
|
||||
def caculate_zico(grad_dict):
|
||||
allgrad_array = None
|
||||
for i, modname in enumerate(grad_dict.keys()):
|
||||
grad_dict[modname] = np.array(grad_dict[modname])
|
||||
nsr_mean_sum = 0
|
||||
nsr_mean_sum_abs = 0
|
||||
nsr_mean_avg = 0
|
||||
nsr_mean_avg_abs = 0
|
||||
for j, modname in enumerate(grad_dict.keys()):
|
||||
nsr_std = np.std(grad_dict[modname], axis=0)
|
||||
# print(grad_dict[modname].shape)
|
||||
# print(grad_dict[modname].shape, nsr_std.shape)
|
||||
nonzero_idx = np.nonzero(nsr_std)[0]
|
||||
nsr_mean_abs = np.mean(np.abs(grad_dict[modname]), axis=0)
|
||||
tmpsum = np.sum(nsr_mean_abs[nonzero_idx] / nsr_std[nonzero_idx])
|
||||
if tmpsum == 0:
|
||||
pass
|
||||
else:
|
||||
nsr_mean_sum_abs += np.log(tmpsum)
|
||||
nsr_mean_avg_abs += np.log(np.mean(nsr_mean_abs[nonzero_idx] / nsr_std[nonzero_idx]))
|
||||
return nsr_mean_sum_abs
|
||||
|
||||
|
||||
def getzico(network, inputs, targets, loss_fn, split_data=2):
|
||||
grad_dict = {}
|
||||
network.train()
|
||||
device = inputs.device
|
||||
network.to(device)
|
||||
N = inputs.shape[0]
|
||||
split_data = 2
|
||||
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
outputs = network.forward(inputs[st:en])
|
||||
loss = loss_fn(outputs, targets[st:en])
|
||||
loss.backward()
|
||||
grad_dict = getgrad(network, grad_dict, sp)
|
||||
# print(grad_dict)
|
||||
res = caculate_zico(grad_dict)
|
||||
return res
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@measure('zico', bn=True)
|
||||
def compute_zico(net, inputs, targets, split_data=2, loss_fn=None):
|
||||
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
# print('var:', feature.shape)
|
||||
try:
|
||||
zico = getzico(net, inputs, targets, loss_fn, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
zico= np.nan
|
||||
# print(jc)
|
||||
# print(f'var time: {t} s')
|
||||
return zico
|
||||
83
correlation/foresight/pruners/p_utils.py
Normal file
83
correlation/foresight/pruners/p_utils.py
Normal file
@@ -0,0 +1,83 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ..models import *
|
||||
|
||||
def get_some_data(train_dataloader, num_batches, device):
|
||||
traindata = []
|
||||
dataloader_iter = iter(train_dataloader)
|
||||
for _ in range(num_batches):
|
||||
traindata.append(next(dataloader_iter))
|
||||
inputs = torch.cat([a for a,_ in traindata])
|
||||
targets = torch.cat([b for _,b in traindata])
|
||||
inputs = inputs.to(device)
|
||||
targets = targets.to(device)
|
||||
return inputs, targets
|
||||
|
||||
def get_some_data_grasp(train_dataloader, num_classes, samples_per_class, device):
|
||||
datas = [[] for _ in range(num_classes)]
|
||||
labels = [[] for _ in range(num_classes)]
|
||||
mark = dict()
|
||||
dataloader_iter = iter(train_dataloader)
|
||||
while True:
|
||||
inputs, targets = next(dataloader_iter)
|
||||
for idx in range(inputs.shape[0]):
|
||||
x, y = inputs[idx:idx+1], targets[idx:idx+1]
|
||||
category = y.item()
|
||||
if len(datas[category]) == samples_per_class:
|
||||
mark[category] = True
|
||||
continue
|
||||
datas[category].append(x)
|
||||
labels[category].append(y)
|
||||
if len(mark) == num_classes:
|
||||
break
|
||||
|
||||
x = torch.cat([torch.cat(_, 0) for _ in datas]).to(device)
|
||||
y = torch.cat([torch.cat(_) for _ in labels]).view(-1).to(device)
|
||||
return x, y
|
||||
|
||||
def get_layer_metric_array(net, metric, mode):
|
||||
metric_array = []
|
||||
|
||||
for layer in net.modules():
|
||||
if mode=='channel' and hasattr(layer,'dont_ch_prune'):
|
||||
continue
|
||||
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
|
||||
metric_array.append(metric(layer))
|
||||
|
||||
return metric_array
|
||||
|
||||
def reshape_elements(elements, shapes, device):
|
||||
def broadcast_val(elements, shapes):
|
||||
ret_grads = []
|
||||
for e,sh in zip(elements, shapes):
|
||||
ret_grads.append(torch.stack([torch.Tensor(sh).fill_(v) for v in e], dim=0).to(device))
|
||||
return ret_grads
|
||||
if type(elements[0]) == list:
|
||||
outer = []
|
||||
for e,sh in zip(elements, shapes):
|
||||
outer.append(broadcast_val(e,sh))
|
||||
return outer
|
||||
else:
|
||||
return broadcast_val(elements, shapes)
|
||||
|
||||
def count_parameters(model):
|
||||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
|
||||
116
correlation/foresight/pruners/predictive.py
Normal file
116
correlation/foresight/pruners/predictive.py
Normal file
@@ -0,0 +1,116 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .p_utils import *
|
||||
from . import measures
|
||||
|
||||
import types
|
||||
import copy
|
||||
|
||||
|
||||
def no_op(self,x):
|
||||
return x
|
||||
|
||||
def copynet(self, bn):
|
||||
net = copy.deepcopy(self)
|
||||
if bn==False:
|
||||
for l in net.modules():
|
||||
if isinstance(l,nn.BatchNorm2d) or isinstance(l,nn.BatchNorm1d) :
|
||||
l.forward = types.MethodType(no_op, l)
|
||||
return net
|
||||
|
||||
def find_measures_arrays(net_orig, trainloader, dataload_info, device, measure_names=None, loss_fn=F.cross_entropy):
|
||||
if measure_names is None:
|
||||
measure_names = measures.available_measures
|
||||
|
||||
dataload, num_imgs_or_batches, num_classes = dataload_info
|
||||
|
||||
if not hasattr(net_orig,'get_prunable_copy'):
|
||||
net_orig.get_prunable_copy = types.MethodType(copynet, net_orig)
|
||||
|
||||
#move to cpu to free up mem
|
||||
torch.cuda.empty_cache()
|
||||
net_orig = net_orig.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
#given 1 minibatch of data
|
||||
if dataload == 'random':
|
||||
inputs, targets = get_some_data(trainloader, num_batches=num_imgs_or_batches, device=device)
|
||||
elif dataload == 'grasp':
|
||||
inputs, targets = get_some_data_grasp(trainloader, num_classes, samples_per_class=num_imgs_or_batches, device=device)
|
||||
else:
|
||||
raise NotImplementedError(f'dataload {dataload} is not supported')
|
||||
|
||||
done, ds = False, 1
|
||||
measure_values = {}
|
||||
|
||||
while not done:
|
||||
try:
|
||||
for measure_name in measure_names:
|
||||
if measure_name not in measure_values:
|
||||
val = measures.calc_measure(measure_name, net_orig, device, inputs, targets, loss_fn=loss_fn, split_data=ds)
|
||||
measure_values[measure_name] = val
|
||||
|
||||
done = True
|
||||
except RuntimeError as e:
|
||||
if 'out of memory' in str(e):
|
||||
done=False
|
||||
if ds == inputs.shape[0]//2:
|
||||
raise ValueError(f'Can\'t split data anymore, but still unable to run. Something is wrong')
|
||||
ds += 1
|
||||
while inputs.shape[0] % ds != 0:
|
||||
ds += 1
|
||||
torch.cuda.empty_cache()
|
||||
print(f'Caught CUDA OOM, retrying with data split into {ds} parts')
|
||||
else:
|
||||
raise e
|
||||
|
||||
net_orig = net_orig.to(device).train()
|
||||
return measure_values
|
||||
|
||||
def find_measures(net_orig, # neural network
|
||||
dataloader, # a data loader (typically for training data)
|
||||
dataload_info, # a tuple with (dataload_type = {random, grasp}, number_of_batches_for_random_or_images_per_class_for_grasp, number of classes)
|
||||
device, # GPU/CPU device used
|
||||
loss_fn=F.cross_entropy, # loss function to use within the zero-cost metrics
|
||||
measure_names=None, # an array of measure names to compute, if left blank, all measures are computed by default
|
||||
measures_arr=None): # [not used] if the measures are already computed but need to be summarized, pass them here
|
||||
|
||||
#Given a neural net
|
||||
#and some information about the input data (dataloader)
|
||||
#and loss function (loss_fn)
|
||||
#this function returns an array of zero-cost proxy metrics.
|
||||
|
||||
def sum_arr(arr):
|
||||
sum = 0.
|
||||
for i in range(len(arr)):
|
||||
sum += torch.sum(arr[i])
|
||||
return sum.item()
|
||||
|
||||
if measures_arr is None:
|
||||
measures_arr = find_measures_arrays(net_orig, dataloader, dataload_info, device, loss_fn=loss_fn, measure_names=measure_names)
|
||||
|
||||
measures = {}
|
||||
for k,v in measures_arr.items():
|
||||
if k in ['jacob_cov', 'var', 'cor', 'norm', 'meco', 'zico', 'ntk', 'gradsign', 'zen']:
|
||||
measures[k] = v
|
||||
else:
|
||||
measures[k] = sum_arr(v)
|
||||
|
||||
return measures
|
||||
51
correlation/foresight/version.py
Normal file
51
correlation/foresight/version.py
Normal file
@@ -0,0 +1,51 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
version = '1.0.0'
|
||||
repo = 'unknown'
|
||||
commit = 'unknown'
|
||||
has_repo = False
|
||||
|
||||
try:
|
||||
import git
|
||||
from pathlib import Path
|
||||
|
||||
try:
|
||||
r = git.Repo(Path(__file__).parents[1])
|
||||
has_repo = True
|
||||
|
||||
if not r.remotes:
|
||||
repo = 'local'
|
||||
else:
|
||||
repo = r.remotes.origin.url
|
||||
|
||||
commit = r.head.commit.hexsha
|
||||
if r.is_dirty():
|
||||
commit += ' (dirty)'
|
||||
except git.InvalidGitRepositoryError:
|
||||
raise ImportError()
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
try:
|
||||
from . import _dist_info as info
|
||||
assert not has_repo, '_dist_info should not exist when repo is in place'
|
||||
assert version == info.version
|
||||
repo = info.repo
|
||||
commit = info.commit
|
||||
except (ImportError, SystemError):
|
||||
pass
|
||||
|
||||
__all__ = ['version', 'repo', 'commit', 'has_repo']
|
||||
84
correlation/foresight/weight_initializers.py
Normal file
84
correlation/foresight/weight_initializers.py
Normal file
@@ -0,0 +1,84 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
def init_net(net, w_type, b_type):
|
||||
if w_type == 'none':
|
||||
pass
|
||||
elif w_type == 'xavier':
|
||||
net.apply(init_weights_vs)
|
||||
elif w_type == 'kaiming':
|
||||
net.apply(init_weights_he)
|
||||
elif w_type == 'zero':
|
||||
net.apply(init_weights_zero)
|
||||
elif w_type == 'one':
|
||||
net.apply(init_weights_one)
|
||||
else:
|
||||
raise NotImplementedError(f'init_type={w_type} is not supported.')
|
||||
|
||||
if b_type == 'none':
|
||||
pass
|
||||
elif b_type == 'xavier':
|
||||
net.apply(init_bias_vs)
|
||||
elif b_type == 'kaiming':
|
||||
net.apply(init_bias_he)
|
||||
elif b_type == 'zero':
|
||||
net.apply(init_bias_zero)
|
||||
elif b_type == 'one':
|
||||
net.apply(init_bias_one)
|
||||
else:
|
||||
raise NotImplementedError(f'init_type={b_type} is not supported.')
|
||||
|
||||
|
||||
|
||||
|
||||
def init_weights_vs(m):
|
||||
if type(m) == nn.Linear or type(m) == nn.Conv2d:
|
||||
nn.init.xavier_normal_(m.weight)
|
||||
|
||||
def init_bias_vs(m):
|
||||
if type(m) == nn.Linear or type(m) == nn.Conv2d:
|
||||
if m.bias is not None:
|
||||
nn.init.xavier_normal_(m.bias)
|
||||
|
||||
def init_weights_he(m):
|
||||
if type(m) == nn.Linear or type(m) == nn.Conv2d:
|
||||
nn.init.kaiming_normal_(m.weight)
|
||||
|
||||
def init_bias_he(m):
|
||||
if type(m) == nn.Linear or type(m) == nn.Conv2d:
|
||||
if m.bias is not None:
|
||||
nn.init.kaiming_normal_(m.bias)
|
||||
|
||||
def init_weights_zero(m):
|
||||
if type(m) == nn.Linear or type(m) == nn.Conv2d:
|
||||
m.weight.data.fill_(.0)
|
||||
|
||||
def init_weights_one(m):
|
||||
if type(m) == nn.Linear or type(m) == nn.Conv2d:
|
||||
m.weight.data.fill_(1.)
|
||||
|
||||
def init_bias_zero(m):
|
||||
if type(m) == nn.Linear or type(m) == nn.Conv2d:
|
||||
if m.bias is not None:
|
||||
m.bias.data.fill_(.0)
|
||||
|
||||
|
||||
def init_bias_one(m):
|
||||
if type(m) == nn.Linear or type(m) == nn.Conv2d:
|
||||
if m.bias is not None:
|
||||
m.bias.data.fill_(1.)
|
||||
|
||||
117
correlation/models/CifarDenseNet.py
Normal file
117
correlation/models/CifarDenseNet.py
Normal file
@@ -0,0 +1,117 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
def __init__(self, nChannels, growthRate):
|
||||
super(Bottleneck, self).__init__()
|
||||
interChannels = 4 * growthRate
|
||||
self.bn1 = nn.BatchNorm2d(nChannels)
|
||||
self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(interChannels)
|
||||
self.conv2 = nn.Conv2d(
|
||||
interChannels, growthRate, kernel_size=3, padding=1, bias=False
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(F.relu(self.bn1(x)))
|
||||
out = self.conv2(F.relu(self.bn2(out)))
|
||||
out = torch.cat((x, out), 1)
|
||||
return out
|
||||
|
||||
|
||||
class SingleLayer(nn.Module):
|
||||
def __init__(self, nChannels, growthRate):
|
||||
super(SingleLayer, self).__init__()
|
||||
self.bn1 = nn.BatchNorm2d(nChannels)
|
||||
self.conv1 = nn.Conv2d(
|
||||
nChannels, growthRate, kernel_size=3, padding=1, bias=False
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(F.relu(self.bn1(x)))
|
||||
out = torch.cat((x, out), 1)
|
||||
return out
|
||||
|
||||
|
||||
class Transition(nn.Module):
|
||||
def __init__(self, nChannels, nOutChannels):
|
||||
super(Transition, self).__init__()
|
||||
self.bn1 = nn.BatchNorm2d(nChannels)
|
||||
self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(F.relu(self.bn1(x)))
|
||||
out = F.avg_pool2d(out, 2)
|
||||
return out
|
||||
|
||||
|
||||
class DenseNet(nn.Module):
|
||||
def __init__(self, growthRate, depth, reduction, nClasses, bottleneck):
|
||||
super(DenseNet, self).__init__()
|
||||
|
||||
if bottleneck:
|
||||
nDenseBlocks = int((depth - 4) / 6)
|
||||
else:
|
||||
nDenseBlocks = int((depth - 4) / 3)
|
||||
|
||||
self.message = "CifarDenseNet : block : {:}, depth : {:}, reduction : {:}, growth-rate = {:}, class = {:}".format(
|
||||
"bottleneck" if bottleneck else "basic",
|
||||
depth,
|
||||
reduction,
|
||||
growthRate,
|
||||
nClasses,
|
||||
)
|
||||
|
||||
nChannels = 2 * growthRate
|
||||
self.conv1 = nn.Conv2d(3, nChannels, kernel_size=3, padding=1, bias=False)
|
||||
|
||||
self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
|
||||
nChannels += nDenseBlocks * growthRate
|
||||
nOutChannels = int(math.floor(nChannels * reduction))
|
||||
self.trans1 = Transition(nChannels, nOutChannels)
|
||||
|
||||
nChannels = nOutChannels
|
||||
self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
|
||||
nChannels += nDenseBlocks * growthRate
|
||||
nOutChannels = int(math.floor(nChannels * reduction))
|
||||
self.trans2 = Transition(nChannels, nOutChannels)
|
||||
|
||||
nChannels = nOutChannels
|
||||
self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
|
||||
nChannels += nDenseBlocks * growthRate
|
||||
|
||||
self.act = nn.Sequential(
|
||||
nn.BatchNorm2d(nChannels), nn.ReLU(inplace=True), nn.AvgPool2d(8)
|
||||
)
|
||||
self.fc = nn.Linear(nChannels, nClasses)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck):
|
||||
layers = []
|
||||
for i in range(int(nDenseBlocks)):
|
||||
if bottleneck:
|
||||
layers.append(Bottleneck(nChannels, growthRate))
|
||||
else:
|
||||
layers.append(SingleLayer(nChannels, growthRate))
|
||||
nChannels += growthRate
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, inputs):
|
||||
out = self.conv1(inputs)
|
||||
out = self.trans1(self.dense1(out))
|
||||
out = self.trans2(self.dense2(out))
|
||||
out = self.dense3(out)
|
||||
features = self.act(out)
|
||||
features = features.view(features.size(0), -1)
|
||||
out = self.fc(features)
|
||||
return features, out
|
||||
180
correlation/models/CifarResNet.py
Normal file
180
correlation/models/CifarResNet.py
Normal file
@@ -0,0 +1,180 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .initialization import initialize_resnet
|
||||
from .SharedUtils import additive_func
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, nIn, nOut, stride):
|
||||
super(Downsample, self).__init__()
|
||||
assert stride == 2 and nOut == 2 * nIn, "stride:{} IO:{},{}".format(
|
||||
stride, nIn, nOut
|
||||
)
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, padding=0, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.avg(x)
|
||||
out = self.conv(x)
|
||||
return out
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.conv = nn.Conv2d(
|
||||
nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, bias=bias
|
||||
)
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
if relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.out_dim = nOut
|
||||
self.num_conv = 1
|
||||
|
||||
def forward(self, x):
|
||||
conv = self.conv(x)
|
||||
bn = self.bn(conv)
|
||||
if self.relu:
|
||||
return self.relu(bn)
|
||||
else:
|
||||
return bn
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, True)
|
||||
self.conv_b = ConvBNReLU(planes, planes, 3, 1, 1, False, False)
|
||||
if stride == 2:
|
||||
self.downsample = Downsample(inplanes, planes, stride)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.num_conv = 2
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, True)
|
||||
self.conv_3x3 = ConvBNReLU(planes, planes, 3, stride, 1, False, True)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes, planes * self.expansion, 1, 1, 0, False, False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = Downsample(inplanes, planes * self.expansion, stride)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes, planes * self.expansion, 1, 1, 0, False, False
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.num_conv = 3
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class CifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes, zero_init_residual):
|
||||
super(CifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = "CifarResNet : Block : {:}, Depth : {:}, Layers for each block : {:}".format(
|
||||
block_name, depth, layer_blocks
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList([ConvBNReLU(3, 16, 3, 1, 1, False, True)])
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
assert (
|
||||
sum(x.num_conv for x in self.layers) + 1 == depth
|
||||
), "invalid depth check {:} vs {:}".format(
|
||||
sum(x.num_conv for x in self.layers) + 1, depth
|
||||
)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
||||
115
correlation/models/CifarWideResNet.py
Normal file
115
correlation/models/CifarWideResNet.py
Normal file
@@ -0,0 +1,115 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
class WideBasicblock(nn.Module):
|
||||
def __init__(self, inplanes, planes, stride, dropout=False):
|
||||
super(WideBasicblock, self).__init__()
|
||||
|
||||
self.bn_a = nn.BatchNorm2d(inplanes)
|
||||
self.conv_a = nn.Conv2d(
|
||||
inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False
|
||||
)
|
||||
|
||||
self.bn_b = nn.BatchNorm2d(planes)
|
||||
if dropout:
|
||||
self.dropout = nn.Dropout2d(p=0.5, inplace=True)
|
||||
else:
|
||||
self.dropout = None
|
||||
self.conv_b = nn.Conv2d(
|
||||
planes, planes, kernel_size=3, stride=1, padding=1, bias=False
|
||||
)
|
||||
|
||||
if inplanes != planes:
|
||||
self.downsample = nn.Conv2d(
|
||||
inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
basicblock = self.bn_a(x)
|
||||
basicblock = F.relu(basicblock)
|
||||
basicblock = self.conv_a(basicblock)
|
||||
|
||||
basicblock = self.bn_b(basicblock)
|
||||
basicblock = F.relu(basicblock)
|
||||
if self.dropout is not None:
|
||||
basicblock = self.dropout(basicblock)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
x = self.downsample(x)
|
||||
|
||||
return x + basicblock
|
||||
|
||||
|
||||
class CifarWideResNet(nn.Module):
|
||||
"""
|
||||
ResNet optimized for the Cifar dataset, as specified in
|
||||
https://arxiv.org/abs/1512.03385.pdf
|
||||
"""
|
||||
|
||||
def __init__(self, depth, widen_factor, num_classes, dropout):
|
||||
super(CifarWideResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
assert (depth - 4) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 4) // 6
|
||||
print(
|
||||
"CifarPreResNet : Depth : {} , Layers for each block : {}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
|
||||
self.num_classes = num_classes
|
||||
self.dropout = dropout
|
||||
self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
|
||||
|
||||
self.message = "Wide ResNet : depth={:}, widen_factor={:}, class={:}".format(
|
||||
depth, widen_factor, num_classes
|
||||
)
|
||||
self.inplanes = 16
|
||||
self.stage_1 = self._make_layer(
|
||||
WideBasicblock, 16 * widen_factor, layer_blocks, 1
|
||||
)
|
||||
self.stage_2 = self._make_layer(
|
||||
WideBasicblock, 32 * widen_factor, layer_blocks, 2
|
||||
)
|
||||
self.stage_3 = self._make_layer(
|
||||
WideBasicblock, 64 * widen_factor, layer_blocks, 2
|
||||
)
|
||||
self.lastact = nn.Sequential(
|
||||
nn.BatchNorm2d(64 * widen_factor), nn.ReLU(inplace=True)
|
||||
)
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(64 * widen_factor, num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride):
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, self.dropout))
|
||||
self.inplanes = planes
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, 1, self.dropout))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv_3x3(x)
|
||||
x = self.stage_1(x)
|
||||
x = self.stage_2(x)
|
||||
x = self.stage_3(x)
|
||||
x = self.lastact(x)
|
||||
x = self.avgpool(x)
|
||||
features = x.view(x.size(0), -1)
|
||||
outs = self.classifier(features)
|
||||
return features, outs
|
||||
117
correlation/models/ImageNet_MobileNetV2.py
Normal file
117
correlation/models/ImageNet_MobileNetV2.py
Normal file
@@ -0,0 +1,117 @@
|
||||
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
|
||||
from torch import nn
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.conv = nn.Conv2d(
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
groups=groups,
|
||||
bias=False,
|
||||
)
|
||||
self.bn = nn.BatchNorm2d(out_planes)
|
||||
self.relu = nn.ReLU6(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv(x)
|
||||
out = self.bn(out)
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
def __init__(self, inp, oup, stride, expand_ratio):
|
||||
super(InvertedResidual, self).__init__()
|
||||
self.stride = stride
|
||||
assert stride in [1, 2]
|
||||
|
||||
hidden_dim = int(round(inp * expand_ratio))
|
||||
self.use_res_connect = self.stride == 1 and inp == oup
|
||||
|
||||
layers = []
|
||||
if expand_ratio != 1:
|
||||
# pw
|
||||
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
||||
layers.extend(
|
||||
[
|
||||
# dw
|
||||
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
]
|
||||
)
|
||||
self.conv = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_res_connect:
|
||||
return x + self.conv(x)
|
||||
else:
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class MobileNetV2(nn.Module):
|
||||
def __init__(
|
||||
self, num_classes, width_mult, input_channel, last_channel, block_name, dropout
|
||||
):
|
||||
super(MobileNetV2, self).__init__()
|
||||
if block_name == "InvertedResidual":
|
||||
block = InvertedResidual
|
||||
else:
|
||||
raise ValueError("invalid block name : {:}".format(block_name))
|
||||
inverted_residual_setting = [
|
||||
# t, c, n, s
|
||||
[1, 16, 1, 1],
|
||||
[6, 24, 2, 2],
|
||||
[6, 32, 3, 2],
|
||||
[6, 64, 4, 2],
|
||||
[6, 96, 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1],
|
||||
]
|
||||
|
||||
# building first layer
|
||||
input_channel = int(input_channel * width_mult)
|
||||
self.last_channel = int(last_channel * max(1.0, width_mult))
|
||||
features = [ConvBNReLU(3, input_channel, stride=2)]
|
||||
# building inverted residual blocks
|
||||
for t, c, n, s in inverted_residual_setting:
|
||||
output_channel = int(c * width_mult)
|
||||
for i in range(n):
|
||||
stride = s if i == 0 else 1
|
||||
features.append(
|
||||
block(input_channel, output_channel, stride, expand_ratio=t)
|
||||
)
|
||||
input_channel = output_channel
|
||||
# building last several layers
|
||||
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
|
||||
# make it nn.Sequential
|
||||
self.features = nn.Sequential(*features)
|
||||
|
||||
# building classifier
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(self.last_channel, num_classes),
|
||||
)
|
||||
self.message = "MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}".format(
|
||||
width_mult, input_channel, last_channel, block_name, dropout
|
||||
)
|
||||
|
||||
# weight initialization
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
features = self.features(inputs)
|
||||
vectors = features.mean([2, 3])
|
||||
predicts = self.classifier(vectors)
|
||||
return features, predicts
|
||||
217
correlation/models/ImageNet_ResNet.py
Normal file
217
correlation/models/ImageNet_ResNet.py
Normal file
@@ -0,0 +1,217 @@
|
||||
# Deep Residual Learning for Image Recognition, CVPR 2016
|
||||
import torch.nn as nn
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1, groups=1):
|
||||
return nn.Conv2d(
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
groups=groups,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
|
||||
def conv1x1(in_planes, out_planes, stride=1):
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(
|
||||
self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64
|
||||
):
|
||||
super(BasicBlock, self).__init__()
|
||||
if groups != 1 or base_width != 64:
|
||||
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
|
||||
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(
|
||||
self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64
|
||||
):
|
||||
super(Bottleneck, self).__init__()
|
||||
width = int(planes * (base_width / 64.0)) * groups
|
||||
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv1x1(inplanes, width)
|
||||
self.bn1 = nn.BatchNorm2d(width)
|
||||
self.conv2 = conv3x3(width, width, stride, groups)
|
||||
self.bn2 = nn.BatchNorm2d(width)
|
||||
self.conv3 = conv1x1(width, planes * self.expansion)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
block_name,
|
||||
layers,
|
||||
deep_stem,
|
||||
num_classes,
|
||||
zero_init_residual,
|
||||
groups,
|
||||
width_per_group,
|
||||
):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
# planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
|
||||
if block_name == "BasicBlock":
|
||||
block = BasicBlock
|
||||
elif block_name == "Bottleneck":
|
||||
block = Bottleneck
|
||||
else:
|
||||
raise ValueError("invalid block-name : {:}".format(block_name))
|
||||
|
||||
if not deep_stem:
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
else:
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
self.inplanes = 64
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(
|
||||
block, 64, layers[0], stride=1, groups=groups, base_width=width_per_group
|
||||
)
|
||||
self.layer2 = self._make_layer(
|
||||
block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group
|
||||
)
|
||||
self.layer3 = self._make_layer(
|
||||
block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group
|
||||
)
|
||||
self.layer4 = self._make_layer(
|
||||
block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group
|
||||
)
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
||||
self.message = (
|
||||
"block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}".format(
|
||||
block, layers, deep_stem, num_classes
|
||||
)
|
||||
)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
# Zero-initialize the last BN in each residual branch,
|
||||
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
||||
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, Bottleneck):
|
||||
nn.init.constant_(m.bn3.weight, 0)
|
||||
elif isinstance(m, BasicBlock):
|
||||
nn.init.constant_(m.bn2.weight, 0)
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride, groups, base_width):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
if stride == 2:
|
||||
downsample = nn.Sequential(
|
||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||
conv1x1(self.inplanes, planes * block.expansion, 1),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
elif stride == 1:
|
||||
downsample = nn.Sequential(
|
||||
conv1x1(self.inplanes, planes * block.expansion, stride),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid stride [{:}] for downsample".format(stride))
|
||||
|
||||
layers = []
|
||||
layers.append(
|
||||
block(self.inplanes, planes, stride, downsample, groups, base_width)
|
||||
)
|
||||
self.inplanes = planes * block.expansion
|
||||
for _ in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, 1, None, groups, base_width))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.fc(features)
|
||||
|
||||
return features, logits
|
||||
37
correlation/models/SharedUtils.py
Normal file
37
correlation/models/SharedUtils.py
Normal file
@@ -0,0 +1,37 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def additive_func(A, B):
|
||||
assert A.dim() == B.dim() and A.size(0) == B.size(0), "{:} vs {:}".format(
|
||||
A.size(), B.size()
|
||||
)
|
||||
C = min(A.size(1), B.size(1))
|
||||
if A.size(1) == B.size(1):
|
||||
return A + B
|
||||
elif A.size(1) < B.size(1):
|
||||
out = B.clone()
|
||||
out[:, :C] += A
|
||||
return out
|
||||
else:
|
||||
out = A.clone()
|
||||
out[:, :C] += B
|
||||
return out
|
||||
|
||||
|
||||
def change_key(key, value):
|
||||
def func(m):
|
||||
if hasattr(m, key):
|
||||
setattr(m, key, value)
|
||||
|
||||
return func
|
||||
|
||||
|
||||
def parse_channel_info(xstring):
|
||||
blocks = xstring.split(" ")
|
||||
blocks = [x.split("-") for x in blocks]
|
||||
blocks = [[int(_) for _ in x] for x in blocks]
|
||||
return blocks
|
||||
329
correlation/models/__init__.py
Normal file
329
correlation/models/__init__.py
Normal file
@@ -0,0 +1,329 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from os import path as osp
|
||||
from typing import List, Text
|
||||
import torch
|
||||
|
||||
__all__ = [
|
||||
"change_key",
|
||||
"get_cell_based_tiny_net",
|
||||
"get_search_spaces",
|
||||
"get_cifar_models",
|
||||
"get_imagenet_models",
|
||||
"obtain_model",
|
||||
"obtain_search_model",
|
||||
"load_net_from_checkpoint",
|
||||
"CellStructure",
|
||||
"CellArchitectures",
|
||||
]
|
||||
|
||||
# useful modules
|
||||
from xautodl.config_utils import dict2config
|
||||
from .SharedUtils import change_key
|
||||
from .cell_searchs import CellStructure, CellArchitectures
|
||||
|
||||
|
||||
# Cell-based NAS Models
|
||||
def get_cell_based_tiny_net(config):
|
||||
if isinstance(config, dict):
|
||||
config = dict2config(config, None) # to support the argument being a dict
|
||||
# print(config)
|
||||
super_type = getattr(config, "super_type", "basic")
|
||||
# print(super_type)
|
||||
group_names = ["DARTS-V1", "DARTS-V2", "GDAS", "SETN", "ENAS", "RANDOM", "generic"]
|
||||
if super_type == "basic" and config.name in group_names:
|
||||
from .cell_searchs import nas201_super_nets as nas_super_nets
|
||||
|
||||
try:
|
||||
return nas_super_nets[config.name](
|
||||
config.C,
|
||||
config.N,
|
||||
config.max_nodes,
|
||||
config.num_classes,
|
||||
config.space,
|
||||
config.affine,
|
||||
config.track_running_stats,
|
||||
)
|
||||
except:
|
||||
return nas_super_nets[config.name](
|
||||
config.C, config.N, config.max_nodes, config.num_classes, config.space
|
||||
)
|
||||
elif super_type == "search-shape":
|
||||
from .shape_searchs import GenericNAS301Model
|
||||
|
||||
genotype = CellStructure.str2structure(config.genotype)
|
||||
return GenericNAS301Model(
|
||||
config.candidate_Cs,
|
||||
config.max_num_Cs,
|
||||
genotype,
|
||||
config.num_classes,
|
||||
config.affine,
|
||||
config.track_running_stats,
|
||||
)
|
||||
elif super_type == "nasnet-super":
|
||||
from .cell_searchs import nasnet_super_nets as nas_super_nets
|
||||
|
||||
return nas_super_nets[config.name](
|
||||
config.C,
|
||||
config.N,
|
||||
config.steps,
|
||||
config.multiplier,
|
||||
config.stem_multiplier,
|
||||
config.num_classes,
|
||||
config.space,
|
||||
config.affine,
|
||||
config.track_running_stats,
|
||||
)
|
||||
elif config.name == "infer.tiny":
|
||||
from .cell_infers import TinyNetwork
|
||||
|
||||
if hasattr(config, "genotype"):
|
||||
genotype = config.genotype
|
||||
elif hasattr(config, "arch_str"):
|
||||
genotype = CellStructure.str2structure(config.arch_str)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Can not find genotype from this config : {:}".format(config)
|
||||
)
|
||||
return TinyNetwork(config.C, config.N, genotype, config.num_classes)
|
||||
# sss 网络用到的
|
||||
elif config.name == "infer.shape.tiny":
|
||||
from .shape_infers import DynamicShapeTinyNet
|
||||
|
||||
if isinstance(config.channels, str):
|
||||
channels = tuple([int(x) for x in config.channels.split(":")])
|
||||
else:
|
||||
channels = config.channels
|
||||
genotype = CellStructure.str2structure(config.genotype)
|
||||
return DynamicShapeTinyNet(channels, genotype, config.num_classes)
|
||||
elif config.name == "infer.nasnet-cifar":
|
||||
from .cell_infers import NASNetonCIFAR
|
||||
|
||||
raise NotImplementedError
|
||||
else:
|
||||
raise ValueError("invalid network name : {:}".format(config.name))
|
||||
|
||||
|
||||
# obtain the search space, i.e., a dict mapping the operation name into a python-function for this op
|
||||
def get_search_spaces(xtype, name) -> List[Text]:
|
||||
if xtype == "cell" or xtype == "tss": # The topology search space.
|
||||
from .cell_operations import SearchSpaceNames
|
||||
|
||||
assert name in SearchSpaceNames, "invalid name [{:}] in {:}".format(
|
||||
name, SearchSpaceNames.keys()
|
||||
)
|
||||
return SearchSpaceNames[name]
|
||||
elif xtype == "sss": # The size search space.
|
||||
if name in ["nats-bench", "nats-bench-size"]:
|
||||
return {"candidates": [8, 16, 24, 32, 40, 48, 56, 64], "numbers": 5}
|
||||
else:
|
||||
raise ValueError("Invalid name : {:}".format(name))
|
||||
else:
|
||||
raise ValueError("invalid search-space type is {:}".format(xtype))
|
||||
|
||||
|
||||
def get_cifar_models(config, extra_path=None):
|
||||
super_type = getattr(config, "super_type", "basic")
|
||||
if super_type == "basic":
|
||||
from .CifarResNet import CifarResNet
|
||||
from .CifarDenseNet import DenseNet
|
||||
from .CifarWideResNet import CifarWideResNet
|
||||
|
||||
if config.arch == "resnet":
|
||||
return CifarResNet(
|
||||
config.module, config.depth, config.class_num, config.zero_init_residual
|
||||
)
|
||||
elif config.arch == "densenet":
|
||||
return DenseNet(
|
||||
config.growthRate,
|
||||
config.depth,
|
||||
config.reduction,
|
||||
config.class_num,
|
||||
config.bottleneck,
|
||||
)
|
||||
elif config.arch == "wideresnet":
|
||||
return CifarWideResNet(
|
||||
config.depth, config.wide_factor, config.class_num, config.dropout
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid module type : {:}".format(config.arch))
|
||||
elif super_type.startswith("infer"):
|
||||
from .shape_infers import InferWidthCifarResNet
|
||||
from .shape_infers import InferDepthCifarResNet
|
||||
from .shape_infers import InferCifarResNet
|
||||
from .cell_infers import NASNetonCIFAR
|
||||
|
||||
assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format(
|
||||
super_type
|
||||
)
|
||||
infer_mode = super_type.split("-")[1]
|
||||
if infer_mode == "width":
|
||||
return InferWidthCifarResNet(
|
||||
config.module,
|
||||
config.depth,
|
||||
config.xchannels,
|
||||
config.class_num,
|
||||
config.zero_init_residual,
|
||||
)
|
||||
elif infer_mode == "depth":
|
||||
return InferDepthCifarResNet(
|
||||
config.module,
|
||||
config.depth,
|
||||
config.xblocks,
|
||||
config.class_num,
|
||||
config.zero_init_residual,
|
||||
)
|
||||
elif infer_mode == "shape":
|
||||
return InferCifarResNet(
|
||||
config.module,
|
||||
config.depth,
|
||||
config.xblocks,
|
||||
config.xchannels,
|
||||
config.class_num,
|
||||
config.zero_init_residual,
|
||||
)
|
||||
elif infer_mode == "nasnet.cifar":
|
||||
genotype = config.genotype
|
||||
if extra_path is not None: # reload genotype by extra_path
|
||||
if not osp.isfile(extra_path):
|
||||
raise ValueError("invalid extra_path : {:}".format(extra_path))
|
||||
xdata = torch.load(extra_path)
|
||||
current_epoch = xdata["epoch"]
|
||||
genotype = xdata["genotypes"][current_epoch - 1]
|
||||
C = config.C if hasattr(config, "C") else config.ichannel
|
||||
N = config.N if hasattr(config, "N") else config.layers
|
||||
return NASNetonCIFAR(
|
||||
C, N, config.stem_multi, config.class_num, genotype, config.auxiliary
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid infer-mode : {:}".format(infer_mode))
|
||||
else:
|
||||
raise ValueError("invalid super-type : {:}".format(super_type))
|
||||
|
||||
|
||||
def get_imagenet_models(config):
|
||||
super_type = getattr(config, "super_type", "basic")
|
||||
if super_type == "basic":
|
||||
from .ImageNet_ResNet import ResNet
|
||||
from .ImageNet_MobileNetV2 import MobileNetV2
|
||||
|
||||
if config.arch == "resnet":
|
||||
return ResNet(
|
||||
config.block_name,
|
||||
config.layers,
|
||||
config.deep_stem,
|
||||
config.class_num,
|
||||
config.zero_init_residual,
|
||||
config.groups,
|
||||
config.width_per_group,
|
||||
)
|
||||
elif config.arch == "mobilenet_v2":
|
||||
return MobileNetV2(
|
||||
config.class_num,
|
||||
config.width_multi,
|
||||
config.input_channel,
|
||||
config.last_channel,
|
||||
"InvertedResidual",
|
||||
config.dropout,
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid arch : {:}".format(config.arch))
|
||||
elif super_type.startswith("infer"): # NAS searched architecture
|
||||
assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format(
|
||||
super_type
|
||||
)
|
||||
infer_mode = super_type.split("-")[1]
|
||||
if infer_mode == "shape":
|
||||
from .shape_infers import InferImagenetResNet
|
||||
from .shape_infers import InferMobileNetV2
|
||||
|
||||
if config.arch == "resnet":
|
||||
return InferImagenetResNet(
|
||||
config.block_name,
|
||||
config.layers,
|
||||
config.xblocks,
|
||||
config.xchannels,
|
||||
config.deep_stem,
|
||||
config.class_num,
|
||||
config.zero_init_residual,
|
||||
)
|
||||
elif config.arch == "MobileNetV2":
|
||||
return InferMobileNetV2(
|
||||
config.class_num, config.xchannels, config.xblocks, config.dropout
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid arch-mode : {:}".format(config.arch))
|
||||
else:
|
||||
raise ValueError("invalid infer-mode : {:}".format(infer_mode))
|
||||
else:
|
||||
raise ValueError("invalid super-type : {:}".format(super_type))
|
||||
|
||||
|
||||
# Try to obtain the network by config.
|
||||
def obtain_model(config, extra_path=None):
|
||||
if config.dataset == "cifar":
|
||||
return get_cifar_models(config, extra_path)
|
||||
elif config.dataset == "imagenet":
|
||||
return get_imagenet_models(config)
|
||||
else:
|
||||
raise ValueError("invalid dataset in the model config : {:}".format(config))
|
||||
|
||||
|
||||
def obtain_search_model(config):
|
||||
if config.dataset == "cifar":
|
||||
if config.arch == "resnet":
|
||||
from .shape_searchs import SearchWidthCifarResNet
|
||||
from .shape_searchs import SearchDepthCifarResNet
|
||||
from .shape_searchs import SearchShapeCifarResNet
|
||||
|
||||
if config.search_mode == "width":
|
||||
return SearchWidthCifarResNet(
|
||||
config.module, config.depth, config.class_num
|
||||
)
|
||||
elif config.search_mode == "depth":
|
||||
return SearchDepthCifarResNet(
|
||||
config.module, config.depth, config.class_num
|
||||
)
|
||||
elif config.search_mode == "shape":
|
||||
return SearchShapeCifarResNet(
|
||||
config.module, config.depth, config.class_num
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid search mode : {:}".format(config.search_mode))
|
||||
elif config.arch == "simres":
|
||||
from .shape_searchs import SearchWidthSimResNet
|
||||
|
||||
if config.search_mode == "width":
|
||||
return SearchWidthSimResNet(config.depth, config.class_num)
|
||||
else:
|
||||
raise ValueError("invalid search mode : {:}".format(config.search_mode))
|
||||
else:
|
||||
raise ValueError(
|
||||
"invalid arch : {:} for dataset [{:}]".format(
|
||||
config.arch, config.dataset
|
||||
)
|
||||
)
|
||||
elif config.dataset == "imagenet":
|
||||
from .shape_searchs import SearchShapeImagenetResNet
|
||||
|
||||
assert config.search_mode == "shape", "invalid search-mode : {:}".format(
|
||||
config.search_mode
|
||||
)
|
||||
if config.arch == "resnet":
|
||||
return SearchShapeImagenetResNet(
|
||||
config.block_name, config.layers, config.deep_stem, config.class_num
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid model config : {:}".format(config))
|
||||
else:
|
||||
raise ValueError("invalid dataset in the model config : {:}".format(config))
|
||||
|
||||
|
||||
def load_net_from_checkpoint(checkpoint):
|
||||
assert osp.isfile(checkpoint), "checkpoint {:} does not exist".format(checkpoint)
|
||||
checkpoint = torch.load(checkpoint)
|
||||
model_config = dict2config(checkpoint["model-config"], None)
|
||||
model = obtain_model(model_config)
|
||||
model.load_state_dict(checkpoint["base-model"])
|
||||
return model
|
||||
5
correlation/models/cell_infers/__init__.py
Normal file
5
correlation/models/cell_infers/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from .tiny_network import TinyNetwork
|
||||
from .nasnet_cifar import NASNetonCIFAR
|
||||
155
correlation/models/cell_infers/cells.py
Normal file
155
correlation/models/cell_infers/cells.py
Normal file
@@ -0,0 +1,155 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
|
||||
from xautodl.models.cell_operations import OPS
|
||||
|
||||
|
||||
# Cell for NAS-Bench-201
|
||||
class InferCell(nn.Module):
|
||||
def __init__(
|
||||
self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True
|
||||
):
|
||||
super(InferCell, self).__init__()
|
||||
|
||||
self.layers = nn.ModuleList()
|
||||
self.node_IN = []
|
||||
self.node_IX = []
|
||||
self.genotype = deepcopy(genotype)
|
||||
for i in range(1, len(genotype)):
|
||||
node_info = genotype[i - 1]
|
||||
cur_index = []
|
||||
cur_innod = []
|
||||
for (op_name, op_in) in node_info:
|
||||
if op_in == 0:
|
||||
layer = OPS[op_name](
|
||||
C_in, C_out, stride, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
layer = OPS[op_name](C_out, C_out, 1, affine, track_running_stats)
|
||||
cur_index.append(len(self.layers))
|
||||
cur_innod.append(op_in)
|
||||
self.layers.append(layer)
|
||||
self.node_IX.append(cur_index)
|
||||
self.node_IN.append(cur_innod)
|
||||
self.nodes = len(genotype)
|
||||
self.in_dim = C_in
|
||||
self.out_dim = C_out
|
||||
|
||||
def extra_repr(self):
|
||||
string = "info :: nodes={nodes}, inC={in_dim}, outC={out_dim}".format(
|
||||
**self.__dict__
|
||||
)
|
||||
laystr = []
|
||||
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)):
|
||||
y = [
|
||||
"I{:}-L{:}".format(_ii, _il)
|
||||
for _il, _ii in zip(node_layers, node_innods)
|
||||
]
|
||||
x = "{:}<-({:})".format(i + 1, ",".join(y))
|
||||
laystr.append(x)
|
||||
return (
|
||||
string
|
||||
+ ", [{:}]".format(" | ".join(laystr))
|
||||
+ ", {:}".format(self.genotype.tostr())
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
nodes = [inputs]
|
||||
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)):
|
||||
node_feature = sum(
|
||||
self.layers[_il](nodes[_ii])
|
||||
for _il, _ii in zip(node_layers, node_innods)
|
||||
)
|
||||
nodes.append(node_feature)
|
||||
return nodes[-1]
|
||||
|
||||
|
||||
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
||||
class NASNetInferCell(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
genotype,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
):
|
||||
super(NASNetInferCell, self).__init__()
|
||||
self.reduction = reduction
|
||||
if reduction_prev:
|
||||
self.preprocess0 = OPS["skip_connect"](
|
||||
C_prev_prev, C, 2, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
self.preprocess0 = OPS["nor_conv_1x1"](
|
||||
C_prev_prev, C, 1, affine, track_running_stats
|
||||
)
|
||||
self.preprocess1 = OPS["nor_conv_1x1"](
|
||||
C_prev, C, 1, affine, track_running_stats
|
||||
)
|
||||
|
||||
if not reduction:
|
||||
nodes, concats = genotype["normal"], genotype["normal_concat"]
|
||||
else:
|
||||
nodes, concats = genotype["reduce"], genotype["reduce_concat"]
|
||||
self._multiplier = len(concats)
|
||||
self._concats = concats
|
||||
self._steps = len(nodes)
|
||||
self._nodes = nodes
|
||||
self.edges = nn.ModuleDict()
|
||||
for i, node in enumerate(nodes):
|
||||
for in_node in node:
|
||||
name, j = in_node[0], in_node[1]
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
node_str = "{:}<-{:}".format(i + 2, j)
|
||||
self.edges[node_str] = OPS[name](
|
||||
C, C, stride, affine, track_running_stats
|
||||
)
|
||||
|
||||
# [TODO] to support drop_prob in this function..
|
||||
def forward(self, s0, s1, unused_drop_prob):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i, node in enumerate(self._nodes):
|
||||
clist = []
|
||||
for in_node in node:
|
||||
name, j = in_node[0], in_node[1]
|
||||
node_str = "{:}<-{:}".format(i + 2, j)
|
||||
op = self.edges[node_str]
|
||||
clist.append(op(states[j]))
|
||||
states.append(sum(clist))
|
||||
return torch.cat([states[x] for x in self._concats], dim=1)
|
||||
|
||||
|
||||
class AuxiliaryHeadCIFAR(nn.Module):
|
||||
def __init__(self, C, num_classes):
|
||||
"""assuming input size 8x8"""
|
||||
super(AuxiliaryHeadCIFAR, self).__init__()
|
||||
self.features = nn.Sequential(
|
||||
nn.ReLU(inplace=True),
|
||||
nn.AvgPool2d(
|
||||
5, stride=3, padding=0, count_include_pad=False
|
||||
), # image size = 2 x 2
|
||||
nn.Conv2d(C, 128, 1, bias=False),
|
||||
nn.BatchNorm2d(128),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(128, 768, 2, bias=False),
|
||||
nn.BatchNorm2d(768),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
self.classifier = nn.Linear(768, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
x = self.classifier(x.view(x.size(0), -1))
|
||||
return x
|
||||
118
correlation/models/cell_infers/nasnet_cifar.py
Normal file
118
correlation/models/cell_infers/nasnet_cifar.py
Normal file
@@ -0,0 +1,118 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
|
||||
from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetonCIFAR(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C,
|
||||
N,
|
||||
stem_multiplier,
|
||||
num_classes,
|
||||
genotype,
|
||||
auxiliary,
|
||||
affine=True,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(NASNetonCIFAR, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
self.auxiliary_index = None
|
||||
self.auxiliary_head = None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
cell = InferCell(
|
||||
genotype,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = (
|
||||
C_prev,
|
||||
cell._multiplier * C_curr,
|
||||
reduction,
|
||||
)
|
||||
if reduction and C_curr == C * 4 and auxiliary:
|
||||
self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
|
||||
self.auxiliary_index = index
|
||||
self._Layer = len(self.cells)
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.drop_path_prob = -1
|
||||
|
||||
def update_drop_path(self, drop_path_prob):
|
||||
self.drop_path_prob = drop_path_prob
|
||||
|
||||
def auxiliary_param(self):
|
||||
if self.auxiliary_head is None:
|
||||
return []
|
||||
else:
|
||||
return list(self.auxiliary_head.parameters())
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
stem_feature, logits_aux = self.stem(inputs), None
|
||||
cell_results = [stem_feature, stem_feature]
|
||||
for i, cell in enumerate(self.cells):
|
||||
cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
|
||||
cell_results.append(cell_feature)
|
||||
if (
|
||||
self.auxiliary_index is not None
|
||||
and i == self.auxiliary_index
|
||||
and self.training
|
||||
):
|
||||
logits_aux = self.auxiliary_head(cell_results[-1])
|
||||
out = self.lastact(cell_results[-1])
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
if logits_aux is None:
|
||||
return out, logits
|
||||
else:
|
||||
return out, [logits, logits_aux]
|
||||
63
correlation/models/cell_infers/tiny_network.py
Normal file
63
correlation/models/cell_infers/tiny_network.py
Normal file
@@ -0,0 +1,63 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .cells import InferCell
|
||||
|
||||
|
||||
# The macro structure for architectures in NAS-Bench-201
|
||||
class TinyNetwork(nn.Module):
|
||||
def __init__(self, C, N, genotype, num_classes):
|
||||
super(TinyNetwork, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev = C
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2, True)
|
||||
else:
|
||||
cell = InferCell(genotype, C_prev, C_curr, 1)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self._Layer = len(self.cells)
|
||||
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
||||
553
correlation/models/cell_operations.py
Normal file
553
correlation/models/cell_operations.py
Normal file
@@ -0,0 +1,553 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
__all__ = ["OPS", "RAW_OP_CLASSES", "ResNetBasicblock", "SearchSpaceNames"]
|
||||
|
||||
OPS = {
|
||||
"none": lambda C_in, C_out, stride, affine, track_running_stats: Zero(
|
||||
C_in, C_out, stride
|
||||
),
|
||||
"avg_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING(
|
||||
C_in, C_out, stride, "avg", affine, track_running_stats
|
||||
),
|
||||
"max_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING(
|
||||
C_in, C_out, stride, "max", affine, track_running_stats
|
||||
),
|
||||
"nor_conv_7x7": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
|
||||
C_in,
|
||||
C_out,
|
||||
(7, 7),
|
||||
(stride, stride),
|
||||
(3, 3),
|
||||
(1, 1),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"nor_conv_3x3": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
|
||||
C_in,
|
||||
C_out,
|
||||
(3, 3),
|
||||
(stride, stride),
|
||||
(1, 1),
|
||||
(1, 1),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"nor_conv_1x1": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
|
||||
C_in,
|
||||
C_out,
|
||||
(1, 1),
|
||||
(stride, stride),
|
||||
(0, 0),
|
||||
(1, 1),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"dua_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(
|
||||
C_in,
|
||||
C_out,
|
||||
(3, 3),
|
||||
(stride, stride),
|
||||
(1, 1),
|
||||
(1, 1),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"dua_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(
|
||||
C_in,
|
||||
C_out,
|
||||
(5, 5),
|
||||
(stride, stride),
|
||||
(2, 2),
|
||||
(1, 1),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"dil_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: SepConv(
|
||||
C_in,
|
||||
C_out,
|
||||
(3, 3),
|
||||
(stride, stride),
|
||||
(2, 2),
|
||||
(2, 2),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"dil_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: SepConv(
|
||||
C_in,
|
||||
C_out,
|
||||
(5, 5),
|
||||
(stride, stride),
|
||||
(4, 4),
|
||||
(2, 2),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"skip_connect": lambda C_in, C_out, stride, affine, track_running_stats: Identity()
|
||||
if stride == 1 and C_in == C_out
|
||||
else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats),
|
||||
}
|
||||
|
||||
CONNECT_NAS_BENCHMARK = ["none", "skip_connect", "nor_conv_3x3"]
|
||||
NAS_BENCH_201 = ["none", "skip_connect", "nor_conv_1x1", "nor_conv_3x3", "avg_pool_3x3"]
|
||||
DARTS_SPACE = [
|
||||
"none",
|
||||
"skip_connect",
|
||||
"dua_sepc_3x3",
|
||||
"dua_sepc_5x5",
|
||||
"dil_sepc_3x3",
|
||||
"dil_sepc_5x5",
|
||||
"avg_pool_3x3",
|
||||
"max_pool_3x3",
|
||||
]
|
||||
|
||||
SearchSpaceNames = {
|
||||
"connect-nas": CONNECT_NAS_BENCHMARK,
|
||||
"nats-bench": NAS_BENCH_201,
|
||||
"nas-bench-201": NAS_BENCH_201,
|
||||
"darts": DARTS_SPACE,
|
||||
}
|
||||
|
||||
|
||||
class ReLUConvBN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C_in,
|
||||
C_out,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
affine,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(ReLUConvBN, self).__init__()
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(
|
||||
C_in,
|
||||
C_out,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias=not affine,
|
||||
),
|
||||
nn.BatchNorm2d(
|
||||
C_out, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class SepConv(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C_in,
|
||||
C_out,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
affine,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(SepConv, self).__init__()
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(
|
||||
C_in,
|
||||
C_in,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=C_in,
|
||||
bias=False,
|
||||
),
|
||||
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=not affine),
|
||||
nn.BatchNorm2d(
|
||||
C_out, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class DualSepConv(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C_in,
|
||||
C_out,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
affine,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(DualSepConv, self).__init__()
|
||||
self.op_a = SepConv(
|
||||
C_in,
|
||||
C_in,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
self.op_b = SepConv(
|
||||
C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.op_a(x)
|
||||
x = self.op_b(x)
|
||||
return x
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
def __init__(self, inplanes, planes, stride, affine=True, track_running_stats=True):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ReLUConvBN(
|
||||
inplanes, planes, 3, stride, 1, 1, affine, track_running_stats
|
||||
)
|
||||
self.conv_b = ReLUConvBN(
|
||||
planes, planes, 3, 1, 1, 1, affine, track_running_stats
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||
nn.Conv2d(
|
||||
inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False
|
||||
),
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ReLUConvBN(
|
||||
inplanes, planes, 1, 1, 0, 1, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.in_dim = inplanes
|
||||
self.out_dim = planes
|
||||
self.stride = stride
|
||||
self.num_conv = 2
|
||||
|
||||
def extra_repr(self):
|
||||
string = "{name}(inC={in_dim}, outC={out_dim}, stride={stride})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
return string
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
return residual + basicblock
|
||||
|
||||
|
||||
class POOLING(nn.Module):
|
||||
def __init__(
|
||||
self, C_in, C_out, stride, mode, affine=True, track_running_stats=True
|
||||
):
|
||||
super(POOLING, self).__init__()
|
||||
if C_in == C_out:
|
||||
self.preprocess = None
|
||||
else:
|
||||
self.preprocess = ReLUConvBN(
|
||||
C_in, C_out, 1, 1, 0, 1, affine, track_running_stats
|
||||
)
|
||||
if mode == "avg":
|
||||
self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
|
||||
elif mode == "max":
|
||||
self.op = nn.MaxPool2d(3, stride=stride, padding=1)
|
||||
else:
|
||||
raise ValueError("Invalid mode={:} in POOLING".format(mode))
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.preprocess:
|
||||
x = self.preprocess(inputs)
|
||||
else:
|
||||
x = inputs
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class Identity(nn.Module):
|
||||
def __init__(self):
|
||||
super(Identity, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
|
||||
class Zero(nn.Module):
|
||||
def __init__(self, C_in, C_out, stride):
|
||||
super(Zero, self).__init__()
|
||||
self.C_in = C_in
|
||||
self.C_out = C_out
|
||||
self.stride = stride
|
||||
self.is_zero = True
|
||||
|
||||
def forward(self, x):
|
||||
if self.C_in == self.C_out:
|
||||
if self.stride == 1:
|
||||
return x.mul(0.0)
|
||||
else:
|
||||
return x[:, :, :: self.stride, :: self.stride].mul(0.0)
|
||||
else:
|
||||
shape = list(x.shape)
|
||||
shape[1] = self.C_out
|
||||
zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
|
||||
return zeros
|
||||
|
||||
def extra_repr(self):
|
||||
return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__)
|
||||
|
||||
|
||||
class FactorizedReduce(nn.Module):
|
||||
def __init__(self, C_in, C_out, stride, affine, track_running_stats):
|
||||
super(FactorizedReduce, self).__init__()
|
||||
self.stride = stride
|
||||
self.C_in = C_in
|
||||
self.C_out = C_out
|
||||
self.relu = nn.ReLU(inplace=False)
|
||||
if stride == 2:
|
||||
# assert C_out % 2 == 0, 'C_out : {:}'.format(C_out)
|
||||
C_outs = [C_out // 2, C_out - C_out // 2]
|
||||
self.convs = nn.ModuleList()
|
||||
for i in range(2):
|
||||
self.convs.append(
|
||||
nn.Conv2d(
|
||||
C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine
|
||||
)
|
||||
)
|
||||
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
|
||||
elif stride == 1:
|
||||
self.conv = nn.Conv2d(
|
||||
C_in, C_out, 1, stride=stride, padding=0, bias=not affine
|
||||
)
|
||||
else:
|
||||
raise ValueError("Invalid stride : {:}".format(stride))
|
||||
self.bn = nn.BatchNorm2d(
|
||||
C_out, affine=affine, track_running_stats=track_running_stats
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
if self.stride == 2:
|
||||
x = self.relu(x)
|
||||
y = self.pad(x)
|
||||
out = torch.cat([self.convs[0](x), self.convs[1](y[:, :, 1:, 1:])], dim=1)
|
||||
else:
|
||||
out = self.conv(x)
|
||||
out = self.bn(out)
|
||||
return out
|
||||
|
||||
def extra_repr(self):
|
||||
return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__)
|
||||
|
||||
|
||||
# Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019
|
||||
class PartAwareOp(nn.Module):
|
||||
def __init__(self, C_in, C_out, stride, part=4):
|
||||
super().__init__()
|
||||
self.part = 4
|
||||
self.hidden = C_in // 3
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.local_conv_list = nn.ModuleList()
|
||||
for i in range(self.part):
|
||||
self.local_conv_list.append(
|
||||
nn.Sequential(
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(C_in, self.hidden, 1),
|
||||
nn.BatchNorm2d(self.hidden, affine=True),
|
||||
)
|
||||
)
|
||||
self.W_K = nn.Linear(self.hidden, self.hidden)
|
||||
self.W_Q = nn.Linear(self.hidden, self.hidden)
|
||||
|
||||
if stride == 2:
|
||||
self.last = FactorizedReduce(C_in + self.hidden, C_out, 2)
|
||||
elif stride == 1:
|
||||
self.last = FactorizedReduce(C_in + self.hidden, C_out, 1)
|
||||
else:
|
||||
raise ValueError("Invalid Stride : {:}".format(stride))
|
||||
|
||||
def forward(self, x):
|
||||
batch, C, H, W = x.size()
|
||||
assert H >= self.part, "input size too small : {:} vs {:}".format(
|
||||
x.shape, self.part
|
||||
)
|
||||
IHs = [0]
|
||||
for i in range(self.part):
|
||||
IHs.append(min(H, int((i + 1) * (float(H) / self.part))))
|
||||
local_feat_list = []
|
||||
for i in range(self.part):
|
||||
feature = x[:, :, IHs[i] : IHs[i + 1], :]
|
||||
xfeax = self.avg_pool(feature)
|
||||
xfea = self.local_conv_list[i](xfeax)
|
||||
local_feat_list.append(xfea)
|
||||
part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part)
|
||||
part_feature = part_feature.transpose(1, 2).contiguous()
|
||||
part_K = self.W_K(part_feature)
|
||||
part_Q = self.W_Q(part_feature).transpose(1, 2).contiguous()
|
||||
weight_att = torch.bmm(part_K, part_Q)
|
||||
attention = torch.softmax(weight_att, dim=2)
|
||||
aggreateF = torch.bmm(attention, part_feature).transpose(1, 2).contiguous()
|
||||
features = []
|
||||
for i in range(self.part):
|
||||
feature = aggreateF[:, :, i : i + 1].expand(
|
||||
batch, self.hidden, IHs[i + 1] - IHs[i]
|
||||
)
|
||||
feature = feature.view(batch, self.hidden, IHs[i + 1] - IHs[i], 1)
|
||||
features.append(feature)
|
||||
features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W)
|
||||
final_fea = torch.cat((x, features), dim=1)
|
||||
outputs = self.last(final_fea)
|
||||
return outputs
|
||||
|
||||
|
||||
def drop_path(x, drop_prob):
|
||||
if drop_prob > 0.0:
|
||||
keep_prob = 1.0 - drop_prob
|
||||
mask = x.new_zeros(x.size(0), 1, 1, 1)
|
||||
mask = mask.bernoulli_(keep_prob)
|
||||
x = torch.div(x, keep_prob)
|
||||
x.mul_(mask)
|
||||
return x
|
||||
|
||||
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours
|
||||
class GDAS_Reduction_Cell(nn.Module):
|
||||
def __init__(
|
||||
self, C_prev_prev, C_prev, C, reduction_prev, affine, track_running_stats
|
||||
):
|
||||
super(GDAS_Reduction_Cell, self).__init__()
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(
|
||||
C_prev_prev, C, 2, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(
|
||||
C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats
|
||||
)
|
||||
self.preprocess1 = ReLUConvBN(
|
||||
C_prev, C, 1, 1, 0, 1, affine, track_running_stats
|
||||
)
|
||||
|
||||
self.reduction = True
|
||||
self.ops1 = nn.ModuleList(
|
||||
[
|
||||
nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(
|
||||
C,
|
||||
C,
|
||||
(1, 3),
|
||||
stride=(1, 2),
|
||||
padding=(0, 1),
|
||||
groups=8,
|
||||
bias=not affine,
|
||||
),
|
||||
nn.Conv2d(
|
||||
C,
|
||||
C,
|
||||
(3, 1),
|
||||
stride=(2, 1),
|
||||
padding=(1, 0),
|
||||
groups=8,
|
||||
bias=not affine,
|
||||
),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
),
|
||||
nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(
|
||||
C,
|
||||
C,
|
||||
(1, 3),
|
||||
stride=(1, 2),
|
||||
padding=(0, 1),
|
||||
groups=8,
|
||||
bias=not affine,
|
||||
),
|
||||
nn.Conv2d(
|
||||
C,
|
||||
C,
|
||||
(3, 1),
|
||||
stride=(2, 1),
|
||||
padding=(1, 0),
|
||||
groups=8,
|
||||
bias=not affine,
|
||||
),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
self.ops2 = nn.ModuleList(
|
||||
[
|
||||
nn.Sequential(
|
||||
nn.MaxPool2d(3, stride=2, padding=1),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
),
|
||||
nn.Sequential(
|
||||
nn.MaxPool2d(3, stride=2, padding=1),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
@property
|
||||
def multiplier(self):
|
||||
return 4
|
||||
|
||||
def forward(self, s0, s1, drop_prob=-1):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
X0 = self.ops1[0](s0)
|
||||
X1 = self.ops1[1](s1)
|
||||
if self.training and drop_prob > 0.0:
|
||||
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
|
||||
|
||||
# X2 = self.ops2[0] (X0+X1)
|
||||
X2 = self.ops2[0](s0)
|
||||
X3 = self.ops2[1](s1)
|
||||
if self.training and drop_prob > 0.0:
|
||||
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
|
||||
return torch.cat([X0, X1, X2, X3], dim=1)
|
||||
|
||||
|
||||
# To manage the useful classes in this file.
|
||||
RAW_OP_CLASSES = {"gdas_reduction": GDAS_Reduction_Cell}
|
||||
33
correlation/models/cell_searchs/__init__.py
Normal file
33
correlation/models/cell_searchs/__init__.py
Normal file
@@ -0,0 +1,33 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
# The macro structure is defined in NAS-Bench-201
|
||||
from .search_model_darts import TinyNetworkDarts
|
||||
from .search_model_gdas import TinyNetworkGDAS
|
||||
from .search_model_setn import TinyNetworkSETN
|
||||
from .search_model_enas import TinyNetworkENAS
|
||||
from .search_model_random import TinyNetworkRANDOM
|
||||
from .generic_model import GenericNAS201Model
|
||||
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
|
||||
|
||||
# NASNet-based macro structure
|
||||
from .search_model_gdas_nasnet import NASNetworkGDAS
|
||||
from .search_model_gdas_frc_nasnet import NASNetworkGDAS_FRC
|
||||
from .search_model_darts_nasnet import NASNetworkDARTS
|
||||
|
||||
|
||||
nas201_super_nets = {
|
||||
"DARTS-V1": TinyNetworkDarts,
|
||||
"DARTS-V2": TinyNetworkDarts,
|
||||
"GDAS": TinyNetworkGDAS,
|
||||
"SETN": TinyNetworkSETN,
|
||||
"ENAS": TinyNetworkENAS,
|
||||
"RANDOM": TinyNetworkRANDOM,
|
||||
"generic": GenericNAS201Model,
|
||||
}
|
||||
|
||||
nasnet_super_nets = {
|
||||
"GDAS": NASNetworkGDAS,
|
||||
"GDAS_FRC": NASNetworkGDAS_FRC,
|
||||
"DARTS": NASNetworkDARTS,
|
||||
}
|
||||
14
correlation/models/cell_searchs/_test_module.py
Normal file
14
correlation/models/cell_searchs/_test_module.py
Normal file
@@ -0,0 +1,14 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
from search_model_enas_utils import Controller
|
||||
|
||||
|
||||
def main():
|
||||
controller = Controller(6, 4)
|
||||
predictions = controller()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
366
correlation/models/cell_searchs/generic_model.py
Normal file
366
correlation/models/cell_searchs/generic_model.py
Normal file
@@ -0,0 +1,366 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 #
|
||||
#####################################################
|
||||
import torch, random
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from typing import Text
|
||||
from torch.distributions.categorical import Categorical
|
||||
|
||||
from ..cell_operations import ResNetBasicblock, drop_path
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class Controller(nn.Module):
|
||||
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
|
||||
def __init__(
|
||||
self,
|
||||
edge2index,
|
||||
op_names,
|
||||
max_nodes,
|
||||
lstm_size=32,
|
||||
lstm_num_layers=2,
|
||||
tanh_constant=2.5,
|
||||
temperature=5.0,
|
||||
):
|
||||
super(Controller, self).__init__()
|
||||
# assign the attributes
|
||||
self.max_nodes = max_nodes
|
||||
self.num_edge = len(edge2index)
|
||||
self.edge2index = edge2index
|
||||
self.num_ops = len(op_names)
|
||||
self.op_names = op_names
|
||||
self.lstm_size = lstm_size
|
||||
self.lstm_N = lstm_num_layers
|
||||
self.tanh_constant = tanh_constant
|
||||
self.temperature = temperature
|
||||
# create parameters
|
||||
self.register_parameter(
|
||||
"input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size))
|
||||
)
|
||||
self.w_lstm = nn.LSTM(
|
||||
input_size=self.lstm_size,
|
||||
hidden_size=self.lstm_size,
|
||||
num_layers=self.lstm_N,
|
||||
)
|
||||
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
|
||||
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
|
||||
|
||||
nn.init.uniform_(self.input_vars, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_embd.weight, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_pred.weight, -0.1, 0.1)
|
||||
|
||||
def convert_structure(self, _arch):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_index = _arch[self.edge2index[node_str]]
|
||||
op_name = self.op_names[op_index]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def forward(self):
|
||||
|
||||
inputs, h0 = self.input_vars, None
|
||||
log_probs, entropys, sampled_arch = [], [], []
|
||||
for iedge in range(self.num_edge):
|
||||
outputs, h0 = self.w_lstm(inputs, h0)
|
||||
|
||||
logits = self.w_pred(outputs)
|
||||
logits = logits / self.temperature
|
||||
logits = self.tanh_constant * torch.tanh(logits)
|
||||
# distribution
|
||||
op_distribution = Categorical(logits=logits)
|
||||
op_index = op_distribution.sample()
|
||||
sampled_arch.append(op_index.item())
|
||||
|
||||
op_log_prob = op_distribution.log_prob(op_index)
|
||||
log_probs.append(op_log_prob.view(-1))
|
||||
op_entropy = op_distribution.entropy()
|
||||
entropys.append(op_entropy.view(-1))
|
||||
|
||||
# obtain the input embedding for the next step
|
||||
inputs = self.w_embd(op_index)
|
||||
return (
|
||||
torch.sum(torch.cat(log_probs)),
|
||||
torch.sum(torch.cat(entropys)),
|
||||
self.convert_structure(sampled_arch),
|
||||
)
|
||||
|
||||
|
||||
class GenericNAS201Model(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(GenericNAS201Model, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._max_nodes = max_nodes
|
||||
self._stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self._cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self._cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self._op_names = deepcopy(search_space)
|
||||
self._Layer = len(self._cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(
|
||||
nn.BatchNorm2d(
|
||||
C_prev, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self._num_edge = num_edge
|
||||
# algorithm related
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self._mode = None
|
||||
self.dynamic_cell = None
|
||||
self._tau = None
|
||||
self._algo = None
|
||||
self._drop_path = None
|
||||
self.verbose = False
|
||||
|
||||
def set_algo(self, algo: Text):
|
||||
# used for searching
|
||||
assert self._algo is None, "This functioin can only be called once."
|
||||
self._algo = algo
|
||||
if algo == "enas":
|
||||
self.controller = Controller(
|
||||
self.edge2index, self._op_names, self._max_nodes
|
||||
)
|
||||
else:
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(self._num_edge, len(self._op_names))
|
||||
)
|
||||
if algo == "gdas":
|
||||
self._tau = 10
|
||||
|
||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||
assert mode in ["gdas", "enas", "urs", "joint", "select", "dynamic"]
|
||||
self._mode = mode
|
||||
if mode == "dynamic":
|
||||
self.dynamic_cell = deepcopy(dynamic_cell)
|
||||
else:
|
||||
self.dynamic_cell = None
|
||||
|
||||
def set_drop_path(self, progress, drop_path_rate):
|
||||
if drop_path_rate is None:
|
||||
self._drop_path = None
|
||||
elif progress is None:
|
||||
self._drop_path = drop_path_rate
|
||||
else:
|
||||
self._drop_path = progress * drop_path_rate
|
||||
|
||||
@property
|
||||
def mode(self):
|
||||
return self._mode
|
||||
|
||||
@property
|
||||
def drop_path(self):
|
||||
return self._drop_path
|
||||
|
||||
@property
|
||||
def weights(self):
|
||||
xlist = list(self._stem.parameters())
|
||||
xlist += list(self._cells.parameters())
|
||||
xlist += list(self.lastact.parameters())
|
||||
xlist += list(self.global_pooling.parameters())
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self._tau = tau
|
||||
|
||||
@property
|
||||
def tau(self):
|
||||
return self._tau
|
||||
|
||||
@property
|
||||
def alphas(self):
|
||||
if self._algo == "enas":
|
||||
return list(self.controller.parameters())
|
||||
else:
|
||||
return [self.arch_parameters]
|
||||
|
||||
@property
|
||||
def message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self._cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self._cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
if self._algo == "enas":
|
||||
return "w_pred :\n{:}".format(self.controller.w_pred.weight)
|
||||
else:
|
||||
return "arch-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
@property
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self._max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[self.edge2index[node_str]]
|
||||
op_name = self._op_names[weights.argmax().item()]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def dync_genotype(self, use_random=False):
|
||||
genotypes = []
|
||||
with torch.no_grad():
|
||||
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
for i in range(1, self._max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
if use_random:
|
||||
op_name = random.choice(self._op_names)
|
||||
else:
|
||||
weights = alphas_cpu[self.edge2index[node_str]]
|
||||
op_index = torch.multinomial(weights, 1).item()
|
||||
op_name = self._op_names[op_index]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def get_log_prob(self, arch):
|
||||
with torch.no_grad():
|
||||
logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
|
||||
select_logits = []
|
||||
for i, node_info in enumerate(arch.nodes):
|
||||
for op, xin in node_info:
|
||||
node_str = "{:}<-{:}".format(i + 1, xin)
|
||||
op_index = self._op_names.index(op)
|
||||
select_logits.append(logits[self.edge2index[node_str], op_index])
|
||||
return sum(select_logits).item()
|
||||
|
||||
def return_topK(self, K, use_random=False):
|
||||
archs = Structure.gen_all(self._op_names, self._max_nodes, False)
|
||||
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
|
||||
if K < 0 or K >= len(archs):
|
||||
K = len(archs)
|
||||
if use_random:
|
||||
return random.sample(archs, K)
|
||||
else:
|
||||
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
|
||||
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
|
||||
return return_pairs
|
||||
|
||||
def normalize_archp(self):
|
||||
if self.mode == "gdas":
|
||||
while True:
|
||||
gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
|
||||
logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (
|
||||
(torch.isinf(gumbels).any())
|
||||
or (torch.isinf(probs).any())
|
||||
or (torch.isnan(probs).any())
|
||||
):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
with torch.no_grad():
|
||||
hardwts_cpu = hardwts.detach().cpu()
|
||||
return hardwts, hardwts_cpu, index, "GUMBEL"
|
||||
else:
|
||||
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
index = alphas.max(-1, keepdim=True)[1]
|
||||
with torch.no_grad():
|
||||
alphas_cpu = alphas.detach().cpu()
|
||||
return alphas, alphas_cpu, index, "SOFTMAX"
|
||||
|
||||
def forward(self, inputs):
|
||||
alphas, alphas_cpu, index, verbose_str = self.normalize_archp()
|
||||
feature = self._stem(inputs)
|
||||
for i, cell in enumerate(self._cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
if self.mode == "urs":
|
||||
feature = cell.forward_urs(feature)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_urs"
|
||||
elif self.mode == "select":
|
||||
feature = cell.forward_select(feature, alphas_cpu)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_select"
|
||||
elif self.mode == "joint":
|
||||
feature = cell.forward_joint(feature, alphas)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_joint"
|
||||
elif self.mode == "dynamic":
|
||||
feature = cell.forward_dynamic(feature, self.dynamic_cell)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_dynamic"
|
||||
elif self.mode == "gdas":
|
||||
feature = cell.forward_gdas(feature, alphas, index)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_gdas"
|
||||
elif self.mode == "gdas_v1":
|
||||
feature = cell.forward_gdas_v1(feature, alphas, index)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_gdas_v1"
|
||||
else:
|
||||
raise ValueError("invalid mode={:}".format(self.mode))
|
||||
else:
|
||||
feature = cell(feature)
|
||||
if self.drop_path is not None:
|
||||
feature = drop_path(feature, self.drop_path)
|
||||
if self.verbose and random.random() < 0.001:
|
||||
print(verbose_str)
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
return out, logits
|
||||
274
correlation/models/cell_searchs/genotypes.py
Normal file
274
correlation/models/cell_searchs/genotypes.py
Normal file
@@ -0,0 +1,274 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from copy import deepcopy
|
||||
|
||||
|
||||
def get_combination(space, num):
|
||||
combs = []
|
||||
for i in range(num):
|
||||
if i == 0:
|
||||
for func in space:
|
||||
combs.append([(func, i)])
|
||||
else:
|
||||
new_combs = []
|
||||
for string in combs:
|
||||
for func in space:
|
||||
xstring = string + [(func, i)]
|
||||
new_combs.append(xstring)
|
||||
combs = new_combs
|
||||
return combs
|
||||
|
||||
|
||||
class Structure:
|
||||
def __init__(self, genotype):
|
||||
assert isinstance(genotype, list) or isinstance(
|
||||
genotype, tuple
|
||||
), "invalid class of genotype : {:}".format(type(genotype))
|
||||
self.node_num = len(genotype) + 1
|
||||
self.nodes = []
|
||||
self.node_N = []
|
||||
for idx, node_info in enumerate(genotype):
|
||||
assert isinstance(node_info, list) or isinstance(
|
||||
node_info, tuple
|
||||
), "invalid class of node_info : {:}".format(type(node_info))
|
||||
assert len(node_info) >= 1, "invalid length : {:}".format(len(node_info))
|
||||
for node_in in node_info:
|
||||
assert isinstance(node_in, list) or isinstance(
|
||||
node_in, tuple
|
||||
), "invalid class of in-node : {:}".format(type(node_in))
|
||||
assert (
|
||||
len(node_in) == 2 and node_in[1] <= idx
|
||||
), "invalid in-node : {:}".format(node_in)
|
||||
self.node_N.append(len(node_info))
|
||||
self.nodes.append(tuple(deepcopy(node_info)))
|
||||
|
||||
def tolist(self, remove_str):
|
||||
# convert this class to the list, if remove_str is 'none', then remove the 'none' operation.
|
||||
# note that we re-order the input node in this function
|
||||
# return the-genotype-list and success [if unsuccess, it is not a connectivity]
|
||||
genotypes = []
|
||||
for node_info in self.nodes:
|
||||
node_info = list(node_info)
|
||||
node_info = sorted(node_info, key=lambda x: (x[1], x[0]))
|
||||
node_info = tuple(filter(lambda x: x[0] != remove_str, node_info))
|
||||
if len(node_info) == 0:
|
||||
return None, False
|
||||
genotypes.append(node_info)
|
||||
return genotypes, True
|
||||
|
||||
def node(self, index):
|
||||
assert index > 0 and index <= len(self), "invalid index={:} < {:}".format(
|
||||
index, len(self)
|
||||
)
|
||||
return self.nodes[index]
|
||||
|
||||
def tostr(self):
|
||||
strings = []
|
||||
for node_info in self.nodes:
|
||||
string = "|".join([x[0] + "~{:}".format(x[1]) for x in node_info])
|
||||
string = "|{:}|".format(string)
|
||||
strings.append(string)
|
||||
return "+".join(strings)
|
||||
|
||||
def check_valid(self):
|
||||
nodes = {0: True}
|
||||
for i, node_info in enumerate(self.nodes):
|
||||
sums = []
|
||||
for op, xin in node_info:
|
||||
if op == "none" or nodes[xin] is False:
|
||||
x = False
|
||||
else:
|
||||
x = True
|
||||
sums.append(x)
|
||||
nodes[i + 1] = sum(sums) > 0
|
||||
return nodes[len(self.nodes)]
|
||||
|
||||
def to_unique_str(self, consider_zero=False):
|
||||
# this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation
|
||||
# two operations are special, i.e., none and skip_connect
|
||||
nodes = {0: "0"}
|
||||
for i_node, node_info in enumerate(self.nodes):
|
||||
cur_node = []
|
||||
for op, xin in node_info:
|
||||
if consider_zero is None:
|
||||
x = "(" + nodes[xin] + ")" + "@{:}".format(op)
|
||||
elif consider_zero:
|
||||
if op == "none" or nodes[xin] == "#":
|
||||
x = "#" # zero
|
||||
elif op == "skip_connect":
|
||||
x = nodes[xin]
|
||||
else:
|
||||
x = "(" + nodes[xin] + ")" + "@{:}".format(op)
|
||||
else:
|
||||
if op == "skip_connect":
|
||||
x = nodes[xin]
|
||||
else:
|
||||
x = "(" + nodes[xin] + ")" + "@{:}".format(op)
|
||||
cur_node.append(x)
|
||||
nodes[i_node + 1] = "+".join(sorted(cur_node))
|
||||
return nodes[len(self.nodes)]
|
||||
|
||||
def check_valid_op(self, op_names):
|
||||
for node_info in self.nodes:
|
||||
for inode_edge in node_info:
|
||||
# assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0])
|
||||
if inode_edge[0] not in op_names:
|
||||
return False
|
||||
return True
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({node_num} nodes with {node_info})".format(
|
||||
name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.nodes) + 1
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.nodes[index]
|
||||
|
||||
@staticmethod
|
||||
def str2structure(xstr):
|
||||
if isinstance(xstr, Structure):
|
||||
return xstr
|
||||
assert isinstance(xstr, str), "must take string (not {:}) as input".format(
|
||||
type(xstr)
|
||||
)
|
||||
nodestrs = xstr.split("+")
|
||||
genotypes = []
|
||||
for i, node_str in enumerate(nodestrs):
|
||||
inputs = list(filter(lambda x: x != "", node_str.split("|")))
|
||||
for xinput in inputs:
|
||||
assert len(xinput.split("~")) == 2, "invalid input length : {:}".format(
|
||||
xinput
|
||||
)
|
||||
inputs = (xi.split("~") for xi in inputs)
|
||||
input_infos = tuple((op, int(IDX)) for (op, IDX) in inputs)
|
||||
genotypes.append(input_infos)
|
||||
return Structure(genotypes)
|
||||
|
||||
@staticmethod
|
||||
def str2fullstructure(xstr, default_name="none"):
|
||||
assert isinstance(xstr, str), "must take string (not {:}) as input".format(
|
||||
type(xstr)
|
||||
)
|
||||
nodestrs = xstr.split("+")
|
||||
genotypes = []
|
||||
for i, node_str in enumerate(nodestrs):
|
||||
inputs = list(filter(lambda x: x != "", node_str.split("|")))
|
||||
for xinput in inputs:
|
||||
assert len(xinput.split("~")) == 2, "invalid input length : {:}".format(
|
||||
xinput
|
||||
)
|
||||
inputs = (xi.split("~") for xi in inputs)
|
||||
input_infos = list((op, int(IDX)) for (op, IDX) in inputs)
|
||||
all_in_nodes = list(x[1] for x in input_infos)
|
||||
for j in range(i):
|
||||
if j not in all_in_nodes:
|
||||
input_infos.append((default_name, j))
|
||||
node_info = sorted(input_infos, key=lambda x: (x[1], x[0]))
|
||||
genotypes.append(tuple(node_info))
|
||||
return Structure(genotypes)
|
||||
|
||||
@staticmethod
|
||||
def gen_all(search_space, num, return_ori):
|
||||
assert isinstance(search_space, list) or isinstance(
|
||||
search_space, tuple
|
||||
), "invalid class of search-space : {:}".format(type(search_space))
|
||||
assert (
|
||||
num >= 2
|
||||
), "There should be at least two nodes in a neural cell instead of {:}".format(
|
||||
num
|
||||
)
|
||||
all_archs = get_combination(search_space, 1)
|
||||
for i, arch in enumerate(all_archs):
|
||||
all_archs[i] = [tuple(arch)]
|
||||
|
||||
for inode in range(2, num):
|
||||
cur_nodes = get_combination(search_space, inode)
|
||||
new_all_archs = []
|
||||
for previous_arch in all_archs:
|
||||
for cur_node in cur_nodes:
|
||||
new_all_archs.append(previous_arch + [tuple(cur_node)])
|
||||
all_archs = new_all_archs
|
||||
if return_ori:
|
||||
return all_archs
|
||||
else:
|
||||
return [Structure(x) for x in all_archs]
|
||||
|
||||
|
||||
ResNet_CODE = Structure(
|
||||
[
|
||||
(("nor_conv_3x3", 0),), # node-1
|
||||
(("nor_conv_3x3", 1),), # node-2
|
||||
(("skip_connect", 0), ("skip_connect", 2)),
|
||||
] # node-3
|
||||
)
|
||||
|
||||
AllConv3x3_CODE = Structure(
|
||||
[
|
||||
(("nor_conv_3x3", 0),), # node-1
|
||||
(("nor_conv_3x3", 0), ("nor_conv_3x3", 1)), # node-2
|
||||
(("nor_conv_3x3", 0), ("nor_conv_3x3", 1), ("nor_conv_3x3", 2)),
|
||||
] # node-3
|
||||
)
|
||||
|
||||
AllFull_CODE = Structure(
|
||||
[
|
||||
(
|
||||
("skip_connect", 0),
|
||||
("nor_conv_1x1", 0),
|
||||
("nor_conv_3x3", 0),
|
||||
("avg_pool_3x3", 0),
|
||||
), # node-1
|
||||
(
|
||||
("skip_connect", 0),
|
||||
("nor_conv_1x1", 0),
|
||||
("nor_conv_3x3", 0),
|
||||
("avg_pool_3x3", 0),
|
||||
("skip_connect", 1),
|
||||
("nor_conv_1x1", 1),
|
||||
("nor_conv_3x3", 1),
|
||||
("avg_pool_3x3", 1),
|
||||
), # node-2
|
||||
(
|
||||
("skip_connect", 0),
|
||||
("nor_conv_1x1", 0),
|
||||
("nor_conv_3x3", 0),
|
||||
("avg_pool_3x3", 0),
|
||||
("skip_connect", 1),
|
||||
("nor_conv_1x1", 1),
|
||||
("nor_conv_3x3", 1),
|
||||
("avg_pool_3x3", 1),
|
||||
("skip_connect", 2),
|
||||
("nor_conv_1x1", 2),
|
||||
("nor_conv_3x3", 2),
|
||||
("avg_pool_3x3", 2),
|
||||
),
|
||||
] # node-3
|
||||
)
|
||||
|
||||
AllConv1x1_CODE = Structure(
|
||||
[
|
||||
(("nor_conv_1x1", 0),), # node-1
|
||||
(("nor_conv_1x1", 0), ("nor_conv_1x1", 1)), # node-2
|
||||
(("nor_conv_1x1", 0), ("nor_conv_1x1", 1), ("nor_conv_1x1", 2)),
|
||||
] # node-3
|
||||
)
|
||||
|
||||
AllIdentity_CODE = Structure(
|
||||
[
|
||||
(("skip_connect", 0),), # node-1
|
||||
(("skip_connect", 0), ("skip_connect", 1)), # node-2
|
||||
(("skip_connect", 0), ("skip_connect", 1), ("skip_connect", 2)),
|
||||
] # node-3
|
||||
)
|
||||
|
||||
architectures = {
|
||||
"resnet": ResNet_CODE,
|
||||
"all_c3x3": AllConv3x3_CODE,
|
||||
"all_c1x1": AllConv1x1_CODE,
|
||||
"all_idnt": AllIdentity_CODE,
|
||||
"all_full": AllFull_CODE,
|
||||
}
|
||||
267
correlation/models/cell_searchs/search_cells.py
Normal file
267
correlation/models/cell_searchs/search_cells.py
Normal file
@@ -0,0 +1,267 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, random, torch
|
||||
import warnings
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import OPS
|
||||
|
||||
|
||||
# This module is used for NAS-Bench-201, represents a small search space with a complete DAG
|
||||
class NAS201SearchCell(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C_in,
|
||||
C_out,
|
||||
stride,
|
||||
max_nodes,
|
||||
op_names,
|
||||
affine=False,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(NAS201SearchCell, self).__init__()
|
||||
|
||||
self.op_names = deepcopy(op_names)
|
||||
self.edges = nn.ModuleDict()
|
||||
self.max_nodes = max_nodes
|
||||
self.in_dim = C_in
|
||||
self.out_dim = C_out
|
||||
for i in range(1, max_nodes):
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
if j == 0:
|
||||
xlists = [
|
||||
OPS[op_name](C_in, C_out, stride, affine, track_running_stats)
|
||||
for op_name in op_names
|
||||
]
|
||||
else:
|
||||
xlists = [
|
||||
OPS[op_name](C_in, C_out, 1, affine, track_running_stats)
|
||||
for op_name in op_names
|
||||
]
|
||||
self.edges[node_str] = nn.ModuleList(xlists)
|
||||
self.edge_keys = sorted(list(self.edges.keys()))
|
||||
self.edge2index = {key: i for i, key in enumerate(self.edge_keys)}
|
||||
self.num_edges = len(self.edges)
|
||||
|
||||
def extra_repr(self):
|
||||
string = "info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}".format(
|
||||
**self.__dict__
|
||||
)
|
||||
return string
|
||||
|
||||
def forward(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
inter_nodes.append(
|
||||
sum(
|
||||
layer(nodes[j]) * w
|
||||
for layer, w in zip(self.edges[node_str], weights)
|
||||
)
|
||||
)
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# GDAS
|
||||
def forward_gdas(self, inputs, hardwts, index):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = hardwts[self.edge2index[node_str]]
|
||||
argmaxs = index[self.edge2index[node_str]].item()
|
||||
weigsum = sum(
|
||||
weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie]
|
||||
for _ie, edge in enumerate(self.edges[node_str])
|
||||
)
|
||||
inter_nodes.append(weigsum)
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# GDAS Variant: https://github.com/D-X-Y/AutoDL-Projects/issues/119
|
||||
def forward_gdas_v1(self, inputs, hardwts, index):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = hardwts[self.edge2index[node_str]]
|
||||
argmaxs = index[self.edge2index[node_str]].item()
|
||||
weigsum = weights[argmaxs] * self.edges[node_str](nodes[j])
|
||||
inter_nodes.append(weigsum)
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# joint
|
||||
def forward_joint(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
# aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
|
||||
aggregation = sum(
|
||||
layer(nodes[j]) * w
|
||||
for layer, w in zip(self.edges[node_str], weights)
|
||||
)
|
||||
inter_nodes.append(aggregation)
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# uniform random sampling per iteration, SETN
|
||||
def forward_urs(self, inputs):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
while True: # to avoid select zero for all ops
|
||||
sops, has_non_zero = [], False
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
candidates = self.edges[node_str]
|
||||
select_op = random.choice(candidates)
|
||||
sops.append(select_op)
|
||||
if not hasattr(select_op, "is_zero") or select_op.is_zero is False:
|
||||
has_non_zero = True
|
||||
if has_non_zero:
|
||||
break
|
||||
inter_nodes = []
|
||||
for j, select_op in enumerate(sops):
|
||||
inter_nodes.append(select_op(nodes[j]))
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# select the argmax
|
||||
def forward_select(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
inter_nodes.append(
|
||||
self.edges[node_str][weights.argmax().item()](nodes[j])
|
||||
)
|
||||
# inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# forward with a specific structure
|
||||
def forward_dynamic(self, inputs, structure):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
cur_op_node = structure.nodes[i - 1]
|
||||
inter_nodes = []
|
||||
for op_name, j in cur_op_node:
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_index = self.op_names.index(op_name)
|
||||
inter_nodes.append(self.edges[node_str][op_index](nodes[j]))
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
|
||||
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
def __init__(self, space, C, stride, affine, track_running_stats):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in space:
|
||||
op = OPS[primitive](C, C, stride, affine, track_running_stats)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward_gdas(self, x, weights, index):
|
||||
return self._ops[index](x) * weights[index]
|
||||
|
||||
def forward_darts(self, x, weights):
|
||||
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
||||
|
||||
|
||||
class NASNetSearchCell(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
):
|
||||
super(NASNetSearchCell, self).__init__()
|
||||
self.reduction = reduction
|
||||
self.op_names = deepcopy(space)
|
||||
if reduction_prev:
|
||||
self.preprocess0 = OPS["skip_connect"](
|
||||
C_prev_prev, C, 2, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
self.preprocess0 = OPS["nor_conv_1x1"](
|
||||
C_prev_prev, C, 1, affine, track_running_stats
|
||||
)
|
||||
self.preprocess1 = OPS["nor_conv_1x1"](
|
||||
C_prev, C, 1, affine, track_running_stats
|
||||
)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
self.edges = nn.ModuleDict()
|
||||
for i in range(self._steps):
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(
|
||||
i, j
|
||||
) # indicate the edge from node-(j) to node-(i+2)
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(space, C, stride, affine, track_running_stats)
|
||||
self.edges[node_str] = op
|
||||
self.edge_keys = sorted(list(self.edges.keys()))
|
||||
self.edge2index = {key: i for i, key in enumerate(self.edge_keys)}
|
||||
self.num_edges = len(self.edges)
|
||||
|
||||
@property
|
||||
def multiplier(self):
|
||||
return self._multiplier
|
||||
|
||||
def forward_gdas(self, s0, s1, weightss, indexs):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op = self.edges[node_str]
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
index = indexs[self.edge2index[node_str]].item()
|
||||
clist.append(op.forward_gdas(h, weights, index))
|
||||
states.append(sum(clist))
|
||||
|
||||
return torch.cat(states[-self._multiplier :], dim=1)
|
||||
|
||||
def forward_darts(self, s0, s1, weightss):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op = self.edges[node_str]
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
clist.append(op.forward_darts(h, weights))
|
||||
states.append(sum(clist))
|
||||
|
||||
return torch.cat(states[-self._multiplier :], dim=1)
|
||||
122
correlation/models/cell_searchs/search_model_darts.py
Normal file
122
correlation/models/cell_searchs/search_model_darts.py
Normal file
@@ -0,0 +1,122 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
########################################################
|
||||
# DARTS: Differentiable Architecture Search, ICLR 2019 #
|
||||
########################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkDarts(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkDarts, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
return "arch-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[self.edge2index[node_str]]
|
||||
op_name = self.op_names[weights.argmax().item()]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def forward(self, inputs):
|
||||
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell(feature, alphas)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
||||
178
correlation/models/cell_searchs/search_model_darts_nasnet.py
Normal file
178
correlation/models/cell_searchs/search_model_darts_nasnet.py
Normal file
@@ -0,0 +1,178 @@
|
||||
####################
|
||||
# DARTS, ICLR 2019 #
|
||||
####################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from typing import List, Text, Dict
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkDARTS(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C: int,
|
||||
N: int,
|
||||
steps: int,
|
||||
multiplier: int,
|
||||
stem_multiplier: int,
|
||||
num_classes: int,
|
||||
search_space: List[Text],
|
||||
affine: bool,
|
||||
track_running_stats: bool,
|
||||
):
|
||||
super(NASNetworkDARTS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
cell = SearchCell(
|
||||
search_space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_normal_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.arch_reduce_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
|
||||
def get_weights(self) -> List[torch.nn.Parameter]:
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def get_alphas(self) -> List[torch.nn.Parameter]:
|
||||
return [self.arch_normal_parameters, self.arch_reduce_parameters]
|
||||
|
||||
def show_alphas(self) -> Text:
|
||||
with torch.no_grad():
|
||||
A = "arch-normal-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu()
|
||||
)
|
||||
B = "arch-reduce-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu()
|
||||
)
|
||||
return "{:}\n{:}".format(A, B)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self) -> Text:
|
||||
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self) -> Dict[Text, List]:
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
ws = weights[self.edge2index[node_str]]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == "none":
|
||||
continue
|
||||
edges.append((op_name, j, ws[k]))
|
||||
# (TODO) xuanyidong:
|
||||
# Here the selected two edges might come from the same input node.
|
||||
# And this case could be a problem that two edges will collapse into a single one
|
||||
# due to our assumption -- at most one edge from an input node during evaluation.
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append(tuple(selected_edges))
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(
|
||||
torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
gene_reduce = _parse(
|
||||
torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
return {
|
||||
"normal": gene_normal,
|
||||
"normal_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
"reduce": gene_reduce,
|
||||
"reduce_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
}
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1)
|
||||
reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
ww = reduce_w
|
||||
else:
|
||||
ww = normal_w
|
||||
s0, s1 = s1, cell.forward_darts(s0, s1, ww)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
||||
114
correlation/models/cell_searchs/search_model_enas.py
Normal file
114
correlation/models/cell_searchs/search_model_enas.py
Normal file
@@ -0,0 +1,114 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##########################################################################
|
||||
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
||||
##########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
from .search_model_enas_utils import Controller
|
||||
|
||||
|
||||
class TinyNetworkENAS(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkENAS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
# to maintain the sampled architecture
|
||||
self.sampled_arch = None
|
||||
|
||||
def update_arch(self, _arch):
|
||||
if _arch is None:
|
||||
self.sampled_arch = None
|
||||
elif isinstance(_arch, Structure):
|
||||
self.sampled_arch = _arch
|
||||
elif isinstance(_arch, (list, tuple)):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_index = _arch[self.edge2index[node_str]]
|
||||
op_name = self.op_names[op_index]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
self.sampled_arch = Structure(genotypes)
|
||||
else:
|
||||
raise ValueError("invalid type of input architecture : {:}".format(_arch))
|
||||
return self.sampled_arch
|
||||
|
||||
def create_controller(self):
|
||||
return Controller(len(self.edge2index), len(self.op_names))
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_dynamic(feature, self.sampled_arch)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
||||
74
correlation/models/cell_searchs/search_model_enas_utils.py
Normal file
74
correlation/models/cell_searchs/search_model_enas_utils.py
Normal file
@@ -0,0 +1,74 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##########################################################################
|
||||
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
||||
##########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
|
||||
|
||||
class Controller(nn.Module):
|
||||
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
|
||||
def __init__(
|
||||
self,
|
||||
num_edge,
|
||||
num_ops,
|
||||
lstm_size=32,
|
||||
lstm_num_layers=2,
|
||||
tanh_constant=2.5,
|
||||
temperature=5.0,
|
||||
):
|
||||
super(Controller, self).__init__()
|
||||
# assign the attributes
|
||||
self.num_edge = num_edge
|
||||
self.num_ops = num_ops
|
||||
self.lstm_size = lstm_size
|
||||
self.lstm_N = lstm_num_layers
|
||||
self.tanh_constant = tanh_constant
|
||||
self.temperature = temperature
|
||||
# create parameters
|
||||
self.register_parameter(
|
||||
"input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size))
|
||||
)
|
||||
self.w_lstm = nn.LSTM(
|
||||
input_size=self.lstm_size,
|
||||
hidden_size=self.lstm_size,
|
||||
num_layers=self.lstm_N,
|
||||
)
|
||||
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
|
||||
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
|
||||
|
||||
nn.init.uniform_(self.input_vars, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_embd.weight, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_pred.weight, -0.1, 0.1)
|
||||
|
||||
def forward(self):
|
||||
|
||||
inputs, h0 = self.input_vars, None
|
||||
log_probs, entropys, sampled_arch = [], [], []
|
||||
for iedge in range(self.num_edge):
|
||||
outputs, h0 = self.w_lstm(inputs, h0)
|
||||
|
||||
logits = self.w_pred(outputs)
|
||||
logits = logits / self.temperature
|
||||
logits = self.tanh_constant * torch.tanh(logits)
|
||||
# distribution
|
||||
op_distribution = Categorical(logits=logits)
|
||||
op_index = op_distribution.sample()
|
||||
sampled_arch.append(op_index.item())
|
||||
|
||||
op_log_prob = op_distribution.log_prob(op_index)
|
||||
log_probs.append(op_log_prob.view(-1))
|
||||
op_entropy = op_distribution.entropy()
|
||||
entropys.append(op_entropy.view(-1))
|
||||
|
||||
# obtain the input embedding for the next step
|
||||
inputs = self.w_embd(op_index)
|
||||
return (
|
||||
torch.sum(torch.cat(log_probs)),
|
||||
torch.sum(torch.cat(entropys)),
|
||||
sampled_arch,
|
||||
)
|
||||
142
correlation/models/cell_searchs/search_model_gdas.py
Normal file
142
correlation/models/cell_searchs/search_model_gdas.py
Normal file
@@ -0,0 +1,142 @@
|
||||
###########################################################################
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
||||
###########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkGDAS(nn.Module):
|
||||
|
||||
# def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkGDAS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.tau = 10
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
return "arch-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[self.edge2index[node_str]]
|
||||
op_name = self.op_names[weights.argmax().item()]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def forward(self, inputs):
|
||||
while True:
|
||||
gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
|
||||
logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (
|
||||
(torch.isinf(gumbels).any())
|
||||
or (torch.isinf(probs).any())
|
||||
or (torch.isnan(probs).any())
|
||||
):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_gdas(feature, hardwts, index)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
||||
200
correlation/models/cell_searchs/search_model_gdas_frc_nasnet.py
Normal file
200
correlation/models/cell_searchs/search_model_gdas_frc_nasnet.py
Normal file
@@ -0,0 +1,200 @@
|
||||
###########################################################################
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
||||
###########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
from ..cell_operations import RAW_OP_CLASSES
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkGDAS_FRC(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C,
|
||||
N,
|
||||
steps,
|
||||
multiplier,
|
||||
stem_multiplier,
|
||||
num_classes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
):
|
||||
super(NASNetworkGDAS_FRC, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = RAW_OP_CLASSES["gdas_reduction"](
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
search_space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
reduction
|
||||
or num_edge == cell.num_edges
|
||||
and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = (
|
||||
C_prev,
|
||||
cell.multiplier * C_curr,
|
||||
reduction,
|
||||
)
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.tau = 10
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
A = "arch-normal-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
return "{:}".format(A)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
ws = weights[self.edge2index[node_str]]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == "none":
|
||||
continue
|
||||
edges.append((op_name, j, ws[k]))
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append(tuple(selected_edges))
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(
|
||||
torch.softmax(self.arch_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
return {
|
||||
"normal": gene_normal,
|
||||
"normal_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
}
|
||||
|
||||
def forward(self, inputs):
|
||||
def get_gumbel_prob(xins):
|
||||
while True:
|
||||
gumbels = -torch.empty_like(xins).exponential_().log()
|
||||
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (
|
||||
(torch.isinf(gumbels).any())
|
||||
or (torch.isinf(probs).any())
|
||||
or (torch.isnan(probs).any())
|
||||
):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
return hardwts, index
|
||||
|
||||
hardwts, index = get_gumbel_prob(self.arch_parameters)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
s0, s1 = s1, cell(s0, s1)
|
||||
else:
|
||||
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
||||
197
correlation/models/cell_searchs/search_model_gdas_nasnet.py
Normal file
197
correlation/models/cell_searchs/search_model_gdas_nasnet.py
Normal file
@@ -0,0 +1,197 @@
|
||||
###########################################################################
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
||||
###########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkGDAS(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C,
|
||||
N,
|
||||
steps,
|
||||
multiplier,
|
||||
stem_multiplier,
|
||||
num_classes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
):
|
||||
super(NASNetworkGDAS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
cell = SearchCell(
|
||||
search_space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_normal_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.arch_reduce_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.tau = 10
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_normal_parameters, self.arch_reduce_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
A = "arch-normal-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu()
|
||||
)
|
||||
B = "arch-reduce-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu()
|
||||
)
|
||||
return "{:}\n{:}".format(A, B)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
ws = weights[self.edge2index[node_str]]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == "none":
|
||||
continue
|
||||
edges.append((op_name, j, ws[k]))
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append(tuple(selected_edges))
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(
|
||||
torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
gene_reduce = _parse(
|
||||
torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
return {
|
||||
"normal": gene_normal,
|
||||
"normal_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
"reduce": gene_reduce,
|
||||
"reduce_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
}
|
||||
|
||||
def forward(self, inputs):
|
||||
def get_gumbel_prob(xins):
|
||||
while True:
|
||||
gumbels = -torch.empty_like(xins).exponential_().log()
|
||||
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (
|
||||
(torch.isinf(gumbels).any())
|
||||
or (torch.isinf(probs).any())
|
||||
or (torch.isnan(probs).any())
|
||||
):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
return hardwts, index
|
||||
|
||||
normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters)
|
||||
reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
hardwts, index = reduce_hardwts, reduce_index
|
||||
else:
|
||||
hardwts, index = normal_hardwts, normal_index
|
||||
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
||||
102
correlation/models/cell_searchs/search_model_random.py
Normal file
102
correlation/models/cell_searchs/search_model_random.py
Normal file
@@ -0,0 +1,102 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##############################################################################
|
||||
# Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #
|
||||
##############################################################################
|
||||
import torch, random
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkRANDOM(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkRANDOM, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_cache = None
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def random_genotype(self, set_cache):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_name = random.choice(self.op_names)
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
arch = Structure(genotypes)
|
||||
if set_cache:
|
||||
self.arch_cache = arch
|
||||
return arch
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_dynamic(feature, self.arch_cache)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
return out, logits
|
||||
178
correlation/models/cell_searchs/search_model_setn.py
Normal file
178
correlation/models/cell_searchs/search_model_setn.py
Normal file
@@ -0,0 +1,178 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
######################################################################################
|
||||
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
|
||||
######################################################################################
|
||||
import torch, random
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkSETN(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkSETN, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.mode = "urs"
|
||||
self.dynamic_cell = None
|
||||
|
||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||
assert mode in ["urs", "joint", "select", "dynamic"]
|
||||
self.mode = mode
|
||||
if mode == "dynamic":
|
||||
self.dynamic_cell = deepcopy(dynamic_cell)
|
||||
else:
|
||||
self.dynamic_cell = None
|
||||
|
||||
def get_cal_mode(self):
|
||||
return self.mode
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[self.edge2index[node_str]]
|
||||
op_name = self.op_names[weights.argmax().item()]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def dync_genotype(self, use_random=False):
|
||||
genotypes = []
|
||||
with torch.no_grad():
|
||||
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
if use_random:
|
||||
op_name = random.choice(self.op_names)
|
||||
else:
|
||||
weights = alphas_cpu[self.edge2index[node_str]]
|
||||
op_index = torch.multinomial(weights, 1).item()
|
||||
op_name = self.op_names[op_index]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def get_log_prob(self, arch):
|
||||
with torch.no_grad():
|
||||
logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
|
||||
select_logits = []
|
||||
for i, node_info in enumerate(arch.nodes):
|
||||
for op, xin in node_info:
|
||||
node_str = "{:}<-{:}".format(i + 1, xin)
|
||||
op_index = self.op_names.index(op)
|
||||
select_logits.append(logits[self.edge2index[node_str], op_index])
|
||||
return sum(select_logits).item()
|
||||
|
||||
def return_topK(self, K):
|
||||
archs = Structure.gen_all(self.op_names, self.max_nodes, False)
|
||||
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
|
||||
if K < 0 or K >= len(archs):
|
||||
K = len(archs)
|
||||
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
|
||||
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
|
||||
return return_pairs
|
||||
|
||||
def forward(self, inputs):
|
||||
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
with torch.no_grad():
|
||||
alphas_cpu = alphas.detach().cpu()
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
if self.mode == "urs":
|
||||
feature = cell.forward_urs(feature)
|
||||
elif self.mode == "select":
|
||||
feature = cell.forward_select(feature, alphas_cpu)
|
||||
elif self.mode == "joint":
|
||||
feature = cell.forward_joint(feature, alphas)
|
||||
elif self.mode == "dynamic":
|
||||
feature = cell.forward_dynamic(feature, self.dynamic_cell)
|
||||
else:
|
||||
raise ValueError("invalid mode={:}".format(self.mode))
|
||||
else:
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
||||
205
correlation/models/cell_searchs/search_model_setn_nasnet.py
Normal file
205
correlation/models/cell_searchs/search_model_setn_nasnet.py
Normal file
@@ -0,0 +1,205 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
######################################################################################
|
||||
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
|
||||
######################################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from typing import List, Text, Dict
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkSETN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C: int,
|
||||
N: int,
|
||||
steps: int,
|
||||
multiplier: int,
|
||||
stem_multiplier: int,
|
||||
num_classes: int,
|
||||
search_space: List[Text],
|
||||
affine: bool,
|
||||
track_running_stats: bool,
|
||||
):
|
||||
super(NASNetworkSETN, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
cell = SearchCell(
|
||||
search_space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_normal_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.arch_reduce_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.mode = "urs"
|
||||
self.dynamic_cell = None
|
||||
|
||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||
assert mode in ["urs", "joint", "select", "dynamic"]
|
||||
self.mode = mode
|
||||
if mode == "dynamic":
|
||||
self.dynamic_cell = deepcopy(dynamic_cell)
|
||||
else:
|
||||
self.dynamic_cell = None
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_normal_parameters, self.arch_reduce_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
A = "arch-normal-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu()
|
||||
)
|
||||
B = "arch-reduce-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu()
|
||||
)
|
||||
return "{:}\n{:}".format(A, B)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def dync_genotype(self, use_random=False):
|
||||
genotypes = []
|
||||
with torch.no_grad():
|
||||
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
if use_random:
|
||||
op_name = random.choice(self.op_names)
|
||||
else:
|
||||
weights = alphas_cpu[self.edge2index[node_str]]
|
||||
op_index = torch.multinomial(weights, 1).item()
|
||||
op_name = self.op_names[op_index]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def genotype(self):
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
ws = weights[self.edge2index[node_str]]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == "none":
|
||||
continue
|
||||
edges.append((op_name, j, ws[k]))
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append(tuple(selected_edges))
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(
|
||||
torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
gene_reduce = _parse(
|
||||
torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
return {
|
||||
"normal": gene_normal,
|
||||
"normal_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
"reduce": gene_reduce,
|
||||
"reduce_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
}
|
||||
|
||||
def forward(self, inputs):
|
||||
normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1)
|
||||
reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
# [TODO]
|
||||
raise NotImplementedError
|
||||
if cell.reduction:
|
||||
hardwts, index = reduce_hardwts, reduce_index
|
||||
else:
|
||||
hardwts, index = normal_hardwts, normal_index
|
||||
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
||||
74
correlation/models/clone_weights.py
Normal file
74
correlation/models/clone_weights.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def copy_conv(module, init):
|
||||
assert isinstance(module, nn.Conv2d), "invalid module : {:}".format(module)
|
||||
assert isinstance(init, nn.Conv2d), "invalid module : {:}".format(init)
|
||||
new_i, new_o = module.in_channels, module.out_channels
|
||||
module.weight.copy_(init.weight.detach()[:new_o, :new_i])
|
||||
if module.bias is not None:
|
||||
module.bias.copy_(init.bias.detach()[:new_o])
|
||||
|
||||
|
||||
def copy_bn(module, init):
|
||||
assert isinstance(module, nn.BatchNorm2d), "invalid module : {:}".format(module)
|
||||
assert isinstance(init, nn.BatchNorm2d), "invalid module : {:}".format(init)
|
||||
num_features = module.num_features
|
||||
if module.weight is not None:
|
||||
module.weight.copy_(init.weight.detach()[:num_features])
|
||||
if module.bias is not None:
|
||||
module.bias.copy_(init.bias.detach()[:num_features])
|
||||
if module.running_mean is not None:
|
||||
module.running_mean.copy_(init.running_mean.detach()[:num_features])
|
||||
if module.running_var is not None:
|
||||
module.running_var.copy_(init.running_var.detach()[:num_features])
|
||||
|
||||
|
||||
def copy_fc(module, init):
|
||||
assert isinstance(module, nn.Linear), "invalid module : {:}".format(module)
|
||||
assert isinstance(init, nn.Linear), "invalid module : {:}".format(init)
|
||||
new_i, new_o = module.in_features, module.out_features
|
||||
module.weight.copy_(init.weight.detach()[:new_o, :new_i])
|
||||
if module.bias is not None:
|
||||
module.bias.copy_(init.bias.detach()[:new_o])
|
||||
|
||||
|
||||
def copy_base(module, init):
|
||||
assert type(module).__name__ in [
|
||||
"ConvBNReLU",
|
||||
"Downsample",
|
||||
], "invalid module : {:}".format(module)
|
||||
assert type(init).__name__ in [
|
||||
"ConvBNReLU",
|
||||
"Downsample",
|
||||
], "invalid module : {:}".format(init)
|
||||
if module.conv is not None:
|
||||
copy_conv(module.conv, init.conv)
|
||||
if module.bn is not None:
|
||||
copy_bn(module.bn, init.bn)
|
||||
|
||||
|
||||
def copy_basic(module, init):
|
||||
copy_base(module.conv_a, init.conv_a)
|
||||
copy_base(module.conv_b, init.conv_b)
|
||||
if module.downsample is not None:
|
||||
if init.downsample is not None:
|
||||
copy_base(module.downsample, init.downsample)
|
||||
# else:
|
||||
# import pdb; pdb.set_trace()
|
||||
|
||||
|
||||
def init_from_model(network, init_model):
|
||||
with torch.no_grad():
|
||||
copy_fc(network.classifier, init_model.classifier)
|
||||
for base, target in zip(init_model.layers, network.layers):
|
||||
assert (
|
||||
type(base).__name__ == type(target).__name__
|
||||
), "invalid type : {:} vs {:}".format(base, target)
|
||||
if type(base).__name__ == "ConvBNReLU":
|
||||
copy_base(target, base)
|
||||
elif type(base).__name__ == "ResNetBasicblock":
|
||||
copy_basic(target, base)
|
||||
else:
|
||||
raise ValueError("unknown type name : {:}".format(type(base).__name__))
|
||||
16
correlation/models/initialization.py
Normal file
16
correlation/models/initialization.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def initialize_resnet(m):
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
287
correlation/models/shape_infers/InferCifarResNet.py
Normal file
287
correlation/models/shape_infers/InferCifarResNet.py
Normal file
@@ -0,0 +1,287 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs)
|
||||
|
||||
self.conv_a = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[1],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[2]
|
||||
elif iCs[0] != iCs[2]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[2])
|
||||
self.out_dim = iCs[2]
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
iCs[1],
|
||||
iCs[2],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
elif iCs[0] != iCs[3]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[3])
|
||||
self.out_dim = iCs[3]
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class InferCifarResNet(nn.Module):
|
||||
def __init__(
|
||||
self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual
|
||||
):
|
||||
super(InferCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks)
|
||||
|
||||
self.message = (
|
||||
"InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.xchannels = xchannels
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
xchannels[0],
|
||||
xchannels[1],
|
||||
3,
|
||||
1,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
]
|
||||
)
|
||||
last_channel_idx = 1
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
num_conv = block.num_conv
|
||||
iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1]
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iCs, stride)
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iCs,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
if iL + 1 == xblocks[stage]: # reach the maximum depth
|
||||
out_channel = module.out_dim
|
||||
for iiL in range(iL + 1, layer_blocks):
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
break
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
||||
263
correlation/models/shape_infers/InferCifarResNet_depth.py
Normal file
263
correlation/models/shape_infers/InferCifarResNet_depth.py
Normal file
@@ -0,0 +1,263 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class InferDepthCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual):
|
||||
super(InferDepthCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks)
|
||||
|
||||
self.message = (
|
||||
"InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.channels = [16]
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
planes,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
if iL + 1 == xblocks[stage]: # reach the maximum depth
|
||||
break
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(self.channels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
||||
277
correlation/models/shape_infers/InferCifarResNet_width.py
Normal file
277
correlation/models/shape_infers/InferCifarResNet_width.py
Normal file
@@ -0,0 +1,277 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs)
|
||||
|
||||
self.conv_a = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[1],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[2]
|
||||
elif iCs[0] != iCs[2]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[2])
|
||||
self.out_dim = iCs[2]
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
iCs[1],
|
||||
iCs[2],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
elif iCs[0] != iCs[3]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[3])
|
||||
self.out_dim = iCs[3]
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class InferWidthCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual):
|
||||
super(InferWidthCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.xchannels = xchannels
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
xchannels[0],
|
||||
xchannels[1],
|
||||
3,
|
||||
1,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
]
|
||||
)
|
||||
last_channel_idx = 1
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
num_conv = block.num_conv
|
||||
iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1]
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iCs, stride)
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iCs,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
||||
324
correlation/models/shape_infers/InferImagenetResNet.py
Normal file
324
correlation/models/shape_infers/InferImagenetResNet.py
Normal file
@@ -0,0 +1,324 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs)
|
||||
|
||||
self.conv_a = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[1],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[2]
|
||||
elif iCs[0] != iCs[2]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[2])
|
||||
self.out_dim = iCs[2]
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
iCs[1],
|
||||
iCs[2],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
elif iCs[0] != iCs[3]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[3])
|
||||
self.out_dim = iCs[3]
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class InferImagenetResNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
block_name,
|
||||
layers,
|
||||
xblocks,
|
||||
xchannels,
|
||||
deep_stem,
|
||||
num_classes,
|
||||
zero_init_residual,
|
||||
):
|
||||
super(InferImagenetResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "BasicBlock":
|
||||
block = ResNetBasicblock
|
||||
elif block_name == "Bottleneck":
|
||||
block = ResNetBottleneck
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
assert len(xblocks) == len(
|
||||
layers
|
||||
), "invalid layers : {:} vs xblocks : {:}".format(layers, xblocks)
|
||||
|
||||
self.message = "InferImagenetResNet : Depth : {:} -> {:}, Layers for each block : {:}".format(
|
||||
sum(layers) * block.num_conv, sum(xblocks) * block.num_conv, xblocks
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.xchannels = xchannels
|
||||
if not deep_stem:
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
xchannels[0],
|
||||
xchannels[1],
|
||||
7,
|
||||
2,
|
||||
3,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
]
|
||||
)
|
||||
last_channel_idx = 1
|
||||
else:
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
xchannels[0],
|
||||
xchannels[1],
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
),
|
||||
ConvBNReLU(
|
||||
xchannels[1],
|
||||
xchannels[2],
|
||||
3,
|
||||
1,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
),
|
||||
]
|
||||
)
|
||||
last_channel_idx = 2
|
||||
self.layers.append(nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
|
||||
for stage, layer_blocks in enumerate(layers):
|
||||
for iL in range(layer_blocks):
|
||||
num_conv = block.num_conv
|
||||
iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1]
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iCs, stride)
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iCs,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
if iL + 1 == xblocks[stage]: # reach the maximum depth
|
||||
out_channel = module.out_dim
|
||||
for iiL in range(iL + 1, layer_blocks):
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
break
|
||||
assert last_channel_idx + 1 == len(self.xchannels), "{:} vs {:}".format(
|
||||
last_channel_idx, len(self.xchannels)
|
||||
)
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
||||
176
correlation/models/shape_infers/InferMobileNetV2.py
Normal file
176
correlation/models/shape_infers/InferMobileNetV2.py
Normal file
@@ -0,0 +1,176 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
|
||||
#####################################################
|
||||
from torch import nn
|
||||
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import parse_channel_info
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size,
|
||||
stride,
|
||||
groups,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.conv = nn.Conv2d(
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
groups=groups,
|
||||
bias=False,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(out_planes)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU6(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv(x)
|
||||
if self.bn:
|
||||
out = self.bn(out)
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
def __init__(self, channels, stride, expand_ratio, additive):
|
||||
super(InvertedResidual, self).__init__()
|
||||
self.stride = stride
|
||||
assert stride in [1, 2], "invalid stride : {:}".format(stride)
|
||||
assert len(channels) in [2, 3], "invalid channels : {:}".format(channels)
|
||||
|
||||
if len(channels) == 2:
|
||||
layers = []
|
||||
else:
|
||||
layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)]
|
||||
layers.extend(
|
||||
[
|
||||
# dw
|
||||
ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]),
|
||||
# pw-linear
|
||||
ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False),
|
||||
]
|
||||
)
|
||||
self.conv = nn.Sequential(*layers)
|
||||
self.additive = additive
|
||||
if self.additive and channels[0] != channels[-1]:
|
||||
self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False)
|
||||
else:
|
||||
self.shortcut = None
|
||||
self.out_dim = channels[-1]
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv(x)
|
||||
# if self.additive: return additive_func(out, x)
|
||||
if self.shortcut:
|
||||
return out + self.shortcut(x)
|
||||
else:
|
||||
return out
|
||||
|
||||
|
||||
class InferMobileNetV2(nn.Module):
|
||||
def __init__(self, num_classes, xchannels, xblocks, dropout):
|
||||
super(InferMobileNetV2, self).__init__()
|
||||
block = InvertedResidual
|
||||
inverted_residual_setting = [
|
||||
# t, c, n, s
|
||||
[1, 16, 1, 1],
|
||||
[6, 24, 2, 2],
|
||||
[6, 32, 3, 2],
|
||||
[6, 64, 4, 2],
|
||||
[6, 96, 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1],
|
||||
]
|
||||
assert len(inverted_residual_setting) == len(
|
||||
xblocks
|
||||
), "invalid number of layers : {:} vs {:}".format(
|
||||
len(inverted_residual_setting), len(xblocks)
|
||||
)
|
||||
for block_num, ir_setting in zip(xblocks, inverted_residual_setting):
|
||||
assert block_num <= ir_setting[2], "{:} vs {:}".format(
|
||||
block_num, ir_setting
|
||||
)
|
||||
xchannels = parse_channel_info(xchannels)
|
||||
# for i, chs in enumerate(xchannels):
|
||||
# if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs)
|
||||
self.xchannels = xchannels
|
||||
self.message = "InferMobileNetV2 : xblocks={:}".format(xblocks)
|
||||
# building first layer
|
||||
features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)]
|
||||
last_channel_idx = 1
|
||||
|
||||
# building inverted residual blocks
|
||||
for stage, (t, c, n, s) in enumerate(inverted_residual_setting):
|
||||
for i in range(n):
|
||||
stride = s if i == 0 else 1
|
||||
additv = True if i > 0 else False
|
||||
module = block(self.xchannels[last_channel_idx], stride, t, additv)
|
||||
features.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format(
|
||||
stage,
|
||||
i,
|
||||
n,
|
||||
len(features),
|
||||
self.xchannels[last_channel_idx],
|
||||
stride,
|
||||
t,
|
||||
c,
|
||||
)
|
||||
last_channel_idx += 1
|
||||
if i + 1 == xblocks[stage]:
|
||||
out_channel = module.out_dim
|
||||
for iiL in range(i + 1, n):
|
||||
last_channel_idx += 1
|
||||
self.xchannels[last_channel_idx][0] = module.out_dim
|
||||
break
|
||||
# building last several layers
|
||||
features.append(
|
||||
ConvBNReLU(
|
||||
self.xchannels[last_channel_idx][0],
|
||||
self.xchannels[last_channel_idx][1],
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
)
|
||||
)
|
||||
assert last_channel_idx + 2 == len(self.xchannels), "{:} vs {:}".format(
|
||||
last_channel_idx, len(self.xchannels)
|
||||
)
|
||||
# make it nn.Sequential
|
||||
self.features = nn.Sequential(*features)
|
||||
|
||||
# building classifier
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(self.xchannels[last_channel_idx][1], num_classes),
|
||||
)
|
||||
|
||||
# weight initialization
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
features = self.features(inputs)
|
||||
vectors = features.mean([2, 3])
|
||||
predicts = self.classifier(vectors)
|
||||
return features, predicts
|
||||
74
correlation/models/shape_infers/InferTinyCellNet.py
Normal file
74
correlation/models/shape_infers/InferTinyCellNet.py
Normal file
@@ -0,0 +1,74 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from typing import List, Text, Any
|
||||
import torch.nn as nn
|
||||
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from ..cell_infers.cells import InferCell
|
||||
|
||||
|
||||
class DynamicShapeTinyNet(nn.Module):
|
||||
def __init__(self, channels: List[int], genotype: Any, num_classes: int):
|
||||
super(DynamicShapeTinyNet, self).__init__()
|
||||
self._channels = channels
|
||||
if len(channels) % 3 != 2:
|
||||
raise ValueError("invalid number of layers : {:}".format(len(channels)))
|
||||
self._num_stage = N = len(channels) // 3
|
||||
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(channels[0]),
|
||||
)
|
||||
|
||||
# layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
c_prev = channels[0]
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(c_prev, c_curr, 2, True)
|
||||
else:
|
||||
cell = InferCell(genotype, c_prev, c_curr, 1)
|
||||
self.cells.append(cell)
|
||||
c_prev = cell.out_dim
|
||||
self._num_layer = len(self.cells)
|
||||
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(c_prev, num_classes)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_channels}, N={_num_stage}, L={_num_layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return logits
|
||||
|
||||
def forward_pre_GAP(self, inputs):
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
return out
|
||||
|
||||
9
correlation/models/shape_infers/__init__.py
Normal file
9
correlation/models/shape_infers/__init__.py
Normal file
@@ -0,0 +1,9 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from .InferCifarResNet_width import InferWidthCifarResNet
|
||||
from .InferImagenetResNet import InferImagenetResNet
|
||||
from .InferCifarResNet_depth import InferDepthCifarResNet
|
||||
from .InferCifarResNet import InferCifarResNet
|
||||
from .InferMobileNetV2 import InferMobileNetV2
|
||||
from .InferTinyCellNet import DynamicShapeTinyNet
|
||||
5
correlation/models/shape_infers/shared_utils.py
Normal file
5
correlation/models/shape_infers/shared_utils.py
Normal file
@@ -0,0 +1,5 @@
|
||||
def parse_channel_info(xstring):
|
||||
blocks = xstring.split(" ")
|
||||
blocks = [x.split("-") for x in blocks]
|
||||
blocks = [[int(_) for _ in x] for x in blocks]
|
||||
return blocks
|
||||
760
correlation/models/shape_searchs/SearchCifarResNet.py
Normal file
760
correlation/models/shape_searchs/SearchCifarResNet.py
Normal file
@@ -0,0 +1,760 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(nDepth, return_num):
|
||||
if nDepth == 2:
|
||||
choices = (1, 2)
|
||||
elif nDepth == 3:
|
||||
choices = (1, 2, 3)
|
||||
elif nDepth > 3:
|
||||
choices = list(range(1, nDepth + 1, 2))
|
||||
if choices[-1] < nDepth:
|
||||
choices.append(nDepth)
|
||||
else:
|
||||
raise ValueError("invalid nDepth : {:}".format(nDepth))
|
||||
if return_num:
|
||||
return len(choices)
|
||||
else:
|
||||
return choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_b.OutShape[0]
|
||||
* self.conv_b.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b(
|
||||
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_b,
|
||||
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_D = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_1x4.OutShape[0]
|
||||
* self.conv_1x4.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
|
||||
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
|
||||
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_1x4,
|
||||
sum(
|
||||
[
|
||||
expected_flop_1x1,
|
||||
expected_flop_3x3,
|
||||
expected_flop_1x4,
|
||||
expected_flop_c,
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class SearchShapeCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchShapeCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage in range(3):
|
||||
cur_block_choices = get_depth_choices(layer_blocks, False)
|
||||
assert (
|
||||
cur_block_choices[-1] == layer_blocks
|
||||
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
|
||||
self.message += (
|
||||
"\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(
|
||||
stage, cur_block_choices, layer_blocks
|
||||
)
|
||||
)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices:
|
||||
block_choices.append(layer_index)
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {
|
||||
"choices": block_choices,
|
||||
"stage": stage,
|
||||
"xstart": xstart,
|
||||
}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append((xend, info))
|
||||
xstart, xstage = info["xstart"], info["stage"]
|
||||
for ilayer in range(xstart, xend + 1):
|
||||
idx = bisect_right(info["choices"], ilayer - 1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
|
||||
len(self.Ranges) + 1, depth
|
||||
)
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))),
|
||||
)
|
||||
self.register_parameter(
|
||||
"depth_attentions",
|
||||
nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self, LR=None):
|
||||
if LR is None:
|
||||
return [self.width_attentions, self.depth_attentions]
|
||||
else:
|
||||
return [
|
||||
{"params": self.width_attentions, "lr": LR},
|
||||
{"params": self.depth_attentions, "lr": LR},
|
||||
]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# select channels
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
elif mode == "max":
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == "fix":
|
||||
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
elif mode == "random":
|
||||
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
|
||||
extra_info
|
||||
)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (
|
||||
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
|
||||
)
|
||||
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
# select depth
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
elif mode == "max" or mode == "fix":
|
||||
choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))]
|
||||
elif mode == "random":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop += layer.get_flops(xchl)
|
||||
else:
|
||||
flop += 0 # do not use this layer
|
||||
else:
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["xblocks"] = selected_layers
|
||||
config_dict["super_type"] = "infer-shape"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = (
|
||||
"for depth and width, there are {:} + {:} attention probabilities.".format(
|
||||
len(self.depth_attentions), len(self.width_attentions)
|
||||
)
|
||||
)
|
||||
string += "\n{:}".format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.depth_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:17s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
string += "\n-----------------------------------------------"
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip(
|
||||
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
|
||||
)
|
||||
selected_widths, selected_width_probs = select2withP(
|
||||
self.width_attentions, self.tau
|
||||
)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
feature_maps.append(x)
|
||||
last_channel_idx += layer.num_conv
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]["choices"]
|
||||
xstagei = self.depth_info[i]["stage"]
|
||||
# print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist()))
|
||||
# for A, W in zip(choices, selected_depth_probs[xstagei]):
|
||||
# print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W))
|
||||
possible_tensors = []
|
||||
max_C = max(feature_maps[A].size(1) for A in choices)
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = ChannelWiseInter(feature_maps[A], max_C)
|
||||
# drop_ratio = 1-(tempi+1.0)/len(choices)
|
||||
# xtensor = drop_path(xtensor, drop_ratio)
|
||||
possible_tensors.append(xtensor)
|
||||
weighted_sum = sum(
|
||||
xtensor * W
|
||||
for xtensor, W in zip(
|
||||
possible_tensors, selected_depth_probs[xstagei]
|
||||
)
|
||||
)
|
||||
x = weighted_sum
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop
|
||||
else:
|
||||
x_expected_flop = expected_flop
|
||||
flops.append(x_expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
||||
515
correlation/models/shape_searchs/SearchCifarResNet_depth.py
Normal file
515
correlation/models/shape_searchs/SearchCifarResNet_depth.py
Normal file
@@ -0,0 +1,515 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(nDepth, return_num):
|
||||
if nDepth == 2:
|
||||
choices = (1, 2)
|
||||
elif nDepth == 3:
|
||||
choices = (1, 2, 3)
|
||||
elif nDepth > 3:
|
||||
choices = list(range(1, nDepth + 1, 2))
|
||||
if choices[-1] < nDepth:
|
||||
choices.append(nDepth)
|
||||
else:
|
||||
raise ValueError("invalid nDepth : {:}".format(nDepth))
|
||||
if return_num:
|
||||
return len(choices)
|
||||
else:
|
||||
return choices
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=False)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
|
||||
def get_flops(self, divide=1):
|
||||
iC, oC = self.in_dim, self.out_dim
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, divide=1):
|
||||
flop_A = self.conv_a.get_flops(divide)
|
||||
flop_B = self.conv_b.get_flops(divide)
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops(divide)
|
||||
else:
|
||||
flop_C = 0
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, divide):
|
||||
flop_A = self.conv_1x1.get_flops(divide)
|
||||
flop_B = self.conv_3x3.get_flops(divide)
|
||||
flop_C = self.conv_1x4.get_flops(divide)
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops(divide)
|
||||
else:
|
||||
flop_D = 0
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class SearchDepthCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchDepthCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage in range(3):
|
||||
cur_block_choices = get_depth_choices(layer_blocks, False)
|
||||
assert (
|
||||
cur_block_choices[-1] == layer_blocks
|
||||
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
|
||||
self.message += (
|
||||
"\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(
|
||||
stage, cur_block_choices, layer_blocks
|
||||
)
|
||||
)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices:
|
||||
block_choices.append(layer_index)
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {
|
||||
"choices": block_choices,
|
||||
"stage": stage,
|
||||
"xstart": xstart,
|
||||
}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append((xend, info))
|
||||
xstart, xstage = info["xstart"], info["stage"]
|
||||
for ilayer in range(xstart, xend + 1):
|
||||
idx = bisect_right(info["choices"], ilayer - 1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
self.register_parameter(
|
||||
"depth_attentions",
|
||||
nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))),
|
||||
)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.depth_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# select depth
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
elif mode == "max":
|
||||
choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))]
|
||||
elif mode == "random":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop += layer.get_flops()
|
||||
else:
|
||||
flop += 0 # do not use this layer
|
||||
else:
|
||||
flop += layer.get_flops()
|
||||
# the last fc layer
|
||||
flop += self.classifier.in_features * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xblocks"] = selected_layers
|
||||
config_dict["super_type"] = "infer-depth"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for depth, there are {:} attention probabilities.".format(
|
||||
len(self.depth_attentions)
|
||||
)
|
||||
string += "\n{:}".format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.depth_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:17s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip(
|
||||
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
|
||||
)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
|
||||
x, flops = inputs, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
layer_i = layer(x)
|
||||
feature_maps.append(layer_i)
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]["choices"]
|
||||
xstagei = self.depth_info[i]["stage"]
|
||||
possible_tensors = []
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = feature_maps[A]
|
||||
possible_tensors.append(xtensor)
|
||||
weighted_sum = sum(
|
||||
xtensor * W
|
||||
for xtensor, W in zip(
|
||||
possible_tensors, selected_depth_probs[xstagei]
|
||||
)
|
||||
)
|
||||
x = weighted_sum
|
||||
else:
|
||||
x = layer_i
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
# print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(
|
||||
1e6
|
||||
)
|
||||
else:
|
||||
x_expected_flop = layer.get_flops(1e6)
|
||||
flops.append(x_expected_flop)
|
||||
flops.append(
|
||||
(self.classifier.in_features * self.classifier.out_features * 1.0 / 1e6)
|
||||
)
|
||||
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
||||
619
correlation/models/shape_searchs/SearchCifarResNet_width.py
Normal file
619
correlation/models/shape_searchs/SearchCifarResNet_width.py
Normal file
@@ -0,0 +1,619 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices as get_choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_b.OutShape[0]
|
||||
* self.conv_b.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b(
|
||||
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_b,
|
||||
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_D = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_1x4.OutShape[0]
|
||||
* self.conv_1x4.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
|
||||
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
|
||||
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_1x4,
|
||||
sum(
|
||||
[
|
||||
expected_flop_1x1,
|
||||
expected_flop_3x3,
|
||||
expected_flop_1x4,
|
||||
expected_flop_c,
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class SearchWidthCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchWidthCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
|
||||
len(self.Ranges) + 1, depth
|
||||
)
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.width_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
elif mode == "max":
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == "fix":
|
||||
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
elif mode == "random":
|
||||
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
|
||||
extra_info
|
||||
)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (
|
||||
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
|
||||
)
|
||||
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["super_type"] = "infer-width"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for width, there are {:} attention probabilities.".format(
|
||||
len(self.width_attentions)
|
||||
)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
last_channel_idx += layer.num_conv
|
||||
flops.append(expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
||||
766
correlation/models/shape_searchs/SearchImagenetResNet.py
Normal file
766
correlation/models/shape_searchs/SearchImagenetResNet.py
Normal file
@@ -0,0 +1,766 @@
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(layers):
|
||||
min_depth = min(layers)
|
||||
info = {"num": min_depth}
|
||||
for i, depth in enumerate(layers):
|
||||
choices = []
|
||||
for j in range(1, min_depth + 1):
|
||||
choices.append(int(float(depth) * j / min_depth))
|
||||
info[i] = choices
|
||||
return info
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
nIn,
|
||||
nOut,
|
||||
kernel,
|
||||
stride,
|
||||
padding,
|
||||
bias,
|
||||
has_avg,
|
||||
has_bn,
|
||||
has_relu,
|
||||
last_max_pool=False,
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
if last_max_pool:
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
else:
|
||||
self.maxpool = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
if self.maxpool:
|
||||
out = self.maxpool(out)
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
if self.maxpool:
|
||||
out = self.maxpool(out)
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_b.OutShape[0]
|
||||
* self.conv_b.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
# import pdb; pdb.set_trace()
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b(
|
||||
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_b,
|
||||
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_D = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_1x4.OutShape[0]
|
||||
* self.conv_1x4.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
|
||||
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
|
||||
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_1x4,
|
||||
sum(
|
||||
[
|
||||
expected_flop_1x1,
|
||||
expected_flop_3x3,
|
||||
expected_flop_1x4,
|
||||
expected_flop_c,
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class SearchShapeImagenetResNet(nn.Module):
|
||||
def __init__(self, block_name, layers, deep_stem, num_classes):
|
||||
super(SearchShapeImagenetResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "BasicBlock":
|
||||
block = ResNetBasicblock
|
||||
elif block_name == "Bottleneck":
|
||||
block = ResNetBottleneck
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
sum(layers) * block.num_conv, layers
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
if not deep_stem:
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3,
|
||||
64,
|
||||
7,
|
||||
2,
|
||||
3,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
last_max_pool=True,
|
||||
)
|
||||
]
|
||||
)
|
||||
self.channels = [64]
|
||||
else:
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 32, 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
),
|
||||
ConvBNReLU(
|
||||
32,
|
||||
64,
|
||||
3,
|
||||
1,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
last_max_pool=True,
|
||||
),
|
||||
]
|
||||
)
|
||||
self.channels = [32, 64]
|
||||
|
||||
meta_depth_info = get_depth_choices(layers)
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage, layer_blocks in enumerate(layers):
|
||||
cur_block_choices = meta_depth_info[stage]
|
||||
assert (
|
||||
cur_block_choices[-1] == layer_blocks
|
||||
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 64 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices:
|
||||
block_choices.append(layer_index)
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {
|
||||
"choices": block_choices,
|
||||
"stage": stage,
|
||||
"xstart": xstart,
|
||||
}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append((xend, info))
|
||||
xstart, xstage = info["xstart"], info["stage"]
|
||||
for ilayer in range(xstart, xend + 1):
|
||||
idx = bisect_right(info["choices"], ilayer - 1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))),
|
||||
)
|
||||
self.register_parameter(
|
||||
"depth_attentions",
|
||||
nn.Parameter(torch.Tensor(len(layers), meta_depth_info["num"])),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self, LR=None):
|
||||
if LR is None:
|
||||
return [self.width_attentions, self.depth_attentions]
|
||||
else:
|
||||
return [
|
||||
{"params": self.width_attentions, "lr": LR},
|
||||
{"params": self.depth_attentions, "lr": LR},
|
||||
]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# select channels
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
# select depth
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop += layer.get_flops(xchl)
|
||||
else:
|
||||
flop += 0 # do not use this layer
|
||||
else:
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["xblocks"] = selected_layers
|
||||
config_dict["super_type"] = "infer-shape"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = (
|
||||
"for depth and width, there are {:} + {:} attention probabilities.".format(
|
||||
len(self.depth_attentions), len(self.width_attentions)
|
||||
)
|
||||
)
|
||||
string += "\n{:}".format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.depth_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:17s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
string += "\n-----------------------------------------------"
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip(
|
||||
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
|
||||
)
|
||||
selected_widths, selected_width_probs = select2withP(
|
||||
self.width_attentions, self.tau
|
||||
)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
feature_maps.append(x)
|
||||
last_channel_idx += layer.num_conv
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]["choices"]
|
||||
xstagei = self.depth_info[i]["stage"]
|
||||
# print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist()))
|
||||
# for A, W in zip(choices, selected_depth_probs[xstagei]):
|
||||
# print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W))
|
||||
possible_tensors = []
|
||||
max_C = max(feature_maps[A].size(1) for A in choices)
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = ChannelWiseInter(feature_maps[A], max_C)
|
||||
possible_tensors.append(xtensor)
|
||||
weighted_sum = sum(
|
||||
xtensor * W
|
||||
for xtensor, W in zip(
|
||||
possible_tensors, selected_depth_probs[xstagei]
|
||||
)
|
||||
)
|
||||
x = weighted_sum
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop
|
||||
else:
|
||||
x_expected_flop = expected_flop
|
||||
flops.append(x_expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
||||
466
correlation/models/shape_searchs/SearchSimResNet_width.py
Normal file
466
correlation/models/shape_searchs/SearchSimResNet_width.py
Normal file
@@ -0,0 +1,466 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices as get_choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class SimBlock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(SimBlock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 2, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv.get_flops([channels[0], channels[1]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv.OutShape[0]
|
||||
* self.conv.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert (
|
||||
indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1
|
||||
), "invalid size : {:}, {:}, {:}".format(
|
||||
indexes.size(), probs.size(), probability.size()
|
||||
)
|
||||
out, expected_next_inC, expected_flop = self.conv(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[-1], indexes[-1], probs[-1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_next_inC,
|
||||
sum([expected_flop, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv(inputs)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class SearchWidthSimResNet(nn.Module):
|
||||
def __init__(self, depth, num_classes):
|
||||
super(SearchWidthSimResNet, self).__init__()
|
||||
|
||||
assert (
|
||||
depth - 2
|
||||
) % 3 == 0, "depth should be one of 5, 8, 11, 14, ... instead of {:}".format(
|
||||
depth
|
||||
)
|
||||
layer_blocks = (depth - 2) // 3
|
||||
self.message = (
|
||||
"SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = SimBlock(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
|
||||
len(self.Ranges) + 1, depth
|
||||
)
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.width_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
elif mode == "max":
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == "fix":
|
||||
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
elif mode == "random":
|
||||
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
|
||||
extra_info
|
||||
)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (
|
||||
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
|
||||
)
|
||||
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["super_type"] = "infer-width"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for width, there are {:} attention probabilities.".format(
|
||||
len(self.width_attentions)
|
||||
)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
last_channel_idx += layer.num_conv
|
||||
flops.append(expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
||||
128
correlation/models/shape_searchs/SoftSelect.py
Normal file
128
correlation/models/shape_searchs/SoftSelect.py
Normal file
@@ -0,0 +1,128 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7):
|
||||
if tau <= 0:
|
||||
new_logits = logits
|
||||
probs = nn.functional.softmax(new_logits, dim=1)
|
||||
else:
|
||||
while True: # a trick to avoid the gumbels bug
|
||||
gumbels = -torch.empty_like(logits).exponential_().log()
|
||||
new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
|
||||
probs = nn.functional.softmax(new_logits, dim=1)
|
||||
if (
|
||||
(not torch.isinf(gumbels).any())
|
||||
and (not torch.isinf(probs).any())
|
||||
and (not torch.isnan(probs).any())
|
||||
):
|
||||
break
|
||||
|
||||
if just_prob:
|
||||
return probs
|
||||
|
||||
# with torch.no_grad(): # add eps for unexpected torch error
|
||||
# probs = nn.functional.softmax(new_logits, dim=1)
|
||||
# selected_index = torch.multinomial(probs + eps, 2, False)
|
||||
with torch.no_grad(): # add eps for unexpected torch error
|
||||
probs = probs.cpu()
|
||||
selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
|
||||
selected_logit = torch.gather(new_logits, 1, selected_index)
|
||||
selcted_probs = nn.functional.softmax(selected_logit, dim=1)
|
||||
return selected_index, selcted_probs
|
||||
|
||||
|
||||
def ChannelWiseInter(inputs, oC, mode="v2"):
|
||||
if mode == "v1":
|
||||
return ChannelWiseInterV1(inputs, oC)
|
||||
elif mode == "v2":
|
||||
return ChannelWiseInterV2(inputs, oC)
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
|
||||
|
||||
def ChannelWiseInterV1(inputs, oC):
|
||||
assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size())
|
||||
|
||||
def start_index(a, b, c):
|
||||
return int(math.floor(float(a * c) / b))
|
||||
|
||||
def end_index(a, b, c):
|
||||
return int(math.ceil(float((a + 1) * c) / b))
|
||||
|
||||
batch, iC, H, W = inputs.size()
|
||||
outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device)
|
||||
if iC == oC:
|
||||
return inputs
|
||||
for ot in range(oC):
|
||||
istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC)
|
||||
values = inputs[:, istartT:iendT].mean(dim=1)
|
||||
outputs[:, ot, :, :] = values
|
||||
return outputs
|
||||
|
||||
|
||||
def ChannelWiseInterV2(inputs, oC):
|
||||
assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size())
|
||||
batch, C, H, W = inputs.size()
|
||||
if C == oC:
|
||||
return inputs
|
||||
else:
|
||||
return nn.functional.adaptive_avg_pool3d(inputs, (oC, H, W))
|
||||
# inputs_5D = inputs.view(batch, 1, C, H, W)
|
||||
# otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None)
|
||||
# otputs = otputs_5D.view(batch, oC, H, W)
|
||||
# otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False)
|
||||
# return otputs
|
||||
|
||||
|
||||
def linear_forward(inputs, linear):
|
||||
if linear is None:
|
||||
return inputs
|
||||
iC = inputs.size(1)
|
||||
weight = linear.weight[:, :iC]
|
||||
if linear.bias is None:
|
||||
bias = None
|
||||
else:
|
||||
bias = linear.bias
|
||||
return nn.functional.linear(inputs, weight, bias)
|
||||
|
||||
|
||||
def get_width_choices(nOut):
|
||||
xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
|
||||
if nOut is None:
|
||||
return len(xsrange)
|
||||
else:
|
||||
Xs = [int(nOut * i) for i in xsrange]
|
||||
# xs = [ int(nOut * i // 10) for i in range(2, 11)]
|
||||
# Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1]
|
||||
Xs = sorted(list(set(Xs)))
|
||||
return tuple(Xs)
|
||||
|
||||
|
||||
def get_depth_choices(nDepth):
|
||||
if nDepth is None:
|
||||
return 3
|
||||
else:
|
||||
assert nDepth >= 3, "nDepth should be greater than 2 vs {:}".format(nDepth)
|
||||
if nDepth == 1:
|
||||
return (1, 1, 1)
|
||||
elif nDepth == 2:
|
||||
return (1, 1, 2)
|
||||
elif nDepth >= 3:
|
||||
return (nDepth // 3, nDepth * 2 // 3, nDepth)
|
||||
else:
|
||||
raise ValueError("invalid Depth : {:}".format(nDepth))
|
||||
|
||||
|
||||
def drop_path(x, drop_prob):
|
||||
if drop_prob > 0.0:
|
||||
keep_prob = 1.0 - drop_prob
|
||||
mask = x.new_zeros(x.size(0), 1, 1, 1)
|
||||
mask = mask.bernoulli_(keep_prob)
|
||||
x = x * (mask / keep_prob)
|
||||
# x.div_(keep_prob)
|
||||
# x.mul_(mask)
|
||||
return x
|
||||
9
correlation/models/shape_searchs/__init__.py
Normal file
9
correlation/models/shape_searchs/__init__.py
Normal file
@@ -0,0 +1,9 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from .SearchCifarResNet_width import SearchWidthCifarResNet
|
||||
from .SearchCifarResNet_depth import SearchDepthCifarResNet
|
||||
from .SearchCifarResNet import SearchShapeCifarResNet
|
||||
from .SearchSimResNet_width import SearchWidthSimResNet
|
||||
from .SearchImagenetResNet import SearchShapeImagenetResNet
|
||||
from .generic_size_tiny_cell_model import GenericNAS301Model
|
||||
209
correlation/models/shape_searchs/generic_size_tiny_cell_model.py
Normal file
209
correlation/models/shape_searchs/generic_size_tiny_cell_model.py
Normal file
@@ -0,0 +1,209 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# Here, we utilized three techniques to search for the number of channels:
|
||||
# - channel-wise interpolation from "Network Pruning via Transformable Architecture Search, NeurIPS 2019"
|
||||
# - masking + Gumbel-Softmax (mask_gumbel) from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020"
|
||||
# - masking + sampling (mask_rl) from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020"
|
||||
from typing import List, Text, Any
|
||||
import random, torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from ..cell_infers.cells import InferCell
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
|
||||
|
||||
class GenericNAS301Model(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
candidate_Cs: List[int],
|
||||
max_num_Cs: int,
|
||||
genotype: Any,
|
||||
num_classes: int,
|
||||
affine: bool,
|
||||
track_running_stats: bool,
|
||||
):
|
||||
super(GenericNAS301Model, self).__init__()
|
||||
self._max_num_Cs = max_num_Cs
|
||||
self._candidate_Cs = candidate_Cs
|
||||
if max_num_Cs % 3 != 2:
|
||||
raise ValueError("invalid number of layers : {:}".format(max_num_Cs))
|
||||
self._num_stage = N = max_num_Cs // 3
|
||||
self._max_C = max(candidate_Cs)
|
||||
|
||||
stem = nn.Sequential(
|
||||
nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine),
|
||||
nn.BatchNorm2d(
|
||||
self._max_C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
)
|
||||
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
c_prev = self._max_C
|
||||
self._cells = nn.ModuleList()
|
||||
self._cells.append(stem)
|
||||
for index, reduction in enumerate(layer_reductions):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(c_prev, self._max_C, 2, True)
|
||||
else:
|
||||
cell = InferCell(
|
||||
genotype, c_prev, self._max_C, 1, affine, track_running_stats
|
||||
)
|
||||
self._cells.append(cell)
|
||||
c_prev = cell.out_dim
|
||||
self._num_layer = len(self._cells)
|
||||
|
||||
self.lastact = nn.Sequential(
|
||||
nn.BatchNorm2d(
|
||||
c_prev, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(c_prev, num_classes)
|
||||
# algorithm related
|
||||
self.register_buffer("_tau", torch.zeros(1))
|
||||
self._algo = None
|
||||
self._warmup_ratio = None
|
||||
|
||||
def set_algo(self, algo: Text):
|
||||
# used for searching
|
||||
assert self._algo is None, "This functioin can only be called once."
|
||||
assert algo in ["mask_gumbel", "mask_rl", "tas"], "invalid algo : {:}".format(
|
||||
algo
|
||||
)
|
||||
self._algo = algo
|
||||
self._arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(self._max_num_Cs, len(self._candidate_Cs))
|
||||
)
|
||||
# if algo == 'mask_gumbel' or algo == 'mask_rl':
|
||||
self.register_buffer(
|
||||
"_masks", torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))
|
||||
)
|
||||
for i in range(len(self._candidate_Cs)):
|
||||
self._masks.data[i, : self._candidate_Cs[i]] = 1
|
||||
|
||||
@property
|
||||
def tau(self):
|
||||
return self._tau
|
||||
|
||||
def set_tau(self, tau):
|
||||
self._tau.data[:] = tau
|
||||
|
||||
@property
|
||||
def warmup_ratio(self):
|
||||
return self._warmup_ratio
|
||||
|
||||
def set_warmup_ratio(self, ratio: float):
|
||||
self._warmup_ratio = ratio
|
||||
|
||||
@property
|
||||
def weights(self):
|
||||
xlist = list(self._cells.parameters())
|
||||
xlist += list(self.lastact.parameters())
|
||||
xlist += list(self.global_pooling.parameters())
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
@property
|
||||
def alphas(self):
|
||||
return [self._arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
return "arch-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self._arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
|
||||
@property
|
||||
def random(self):
|
||||
cs = []
|
||||
for i in range(self._max_num_Cs):
|
||||
index = random.randint(0, len(self._candidate_Cs) - 1)
|
||||
cs.append(str(self._candidate_Cs[index]))
|
||||
return ":".join(cs)
|
||||
|
||||
@property
|
||||
def genotype(self):
|
||||
cs = []
|
||||
for i in range(self._max_num_Cs):
|
||||
with torch.no_grad():
|
||||
index = self._arch_parameters[i].argmax().item()
|
||||
cs.append(str(self._candidate_Cs[index]))
|
||||
return ":".join(cs)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self._cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self._cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = inputs
|
||||
|
||||
log_probs = []
|
||||
for i, cell in enumerate(self._cells):
|
||||
feature = cell(feature)
|
||||
# apply different searching algorithms
|
||||
idx = max(0, i - 1)
|
||||
if self._warmup_ratio is not None:
|
||||
if random.random() < self._warmup_ratio:
|
||||
mask = self._masks[-1]
|
||||
else:
|
||||
mask = self._masks[random.randint(0, len(self._masks) - 1)]
|
||||
feature = feature * mask.view(1, -1, 1, 1)
|
||||
elif self._algo == "mask_gumbel":
|
||||
weights = nn.functional.gumbel_softmax(
|
||||
self._arch_parameters[idx : idx + 1], tau=self.tau, dim=-1
|
||||
)
|
||||
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
|
||||
feature = feature * mask
|
||||
elif self._algo == "tas":
|
||||
selected_cs, selected_probs = select2withP(
|
||||
self._arch_parameters[idx : idx + 1], self.tau, num=2
|
||||
)
|
||||
with torch.no_grad():
|
||||
i1, i2 = selected_cs.cpu().view(-1).tolist()
|
||||
c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2]
|
||||
out_channel = max(c1, c2)
|
||||
out1 = ChannelWiseInter(feature[:, :c1], out_channel)
|
||||
out2 = ChannelWiseInter(feature[:, :c2], out_channel)
|
||||
out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1]
|
||||
if feature.shape[1] == out.shape[1]:
|
||||
feature = out
|
||||
else:
|
||||
miss = torch.zeros(
|
||||
feature.shape[0],
|
||||
feature.shape[1] - out.shape[1],
|
||||
feature.shape[2],
|
||||
feature.shape[3],
|
||||
device=feature.device,
|
||||
)
|
||||
feature = torch.cat((out, miss), dim=1)
|
||||
elif self._algo == "mask_rl":
|
||||
prob = nn.functional.softmax(
|
||||
self._arch_parameters[idx : idx + 1], dim=-1
|
||||
)
|
||||
dist = torch.distributions.Categorical(prob)
|
||||
action = dist.sample()
|
||||
log_probs.append(dist.log_prob(action))
|
||||
mask = self._masks[action.item()].view(1, -1, 1, 1)
|
||||
feature = feature * mask
|
||||
else:
|
||||
raise ValueError("invalid algorithm : {:}".format(self._algo))
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits, log_probs
|
||||
BIN
correlation/result/sss_cf100_meco.p
Normal file
BIN
correlation/result/sss_cf100_meco.p
Normal file
Binary file not shown.
BIN
correlation/result/sss_cf100_meco_opt.p
Normal file
BIN
correlation/result/sss_cf100_meco_opt.p
Normal file
Binary file not shown.
BIN
correlation/result/sss_cf10_meco.p
Normal file
BIN
correlation/result/sss_cf10_meco.p
Normal file
Binary file not shown.
BIN
correlation/result/sss_cf10_meco_opt.p
Normal file
BIN
correlation/result/sss_cf10_meco_opt.p
Normal file
Binary file not shown.
BIN
correlation/result/sss_im120_meco.p
Normal file
BIN
correlation/result/sss_im120_meco.p
Normal file
Binary file not shown.
BIN
correlation/result/sss_im120_meco_opt.p
Normal file
BIN
correlation/result/sss_im120_meco_opt.p
Normal file
Binary file not shown.
Reference in New Issue
Block a user