167 lines
6.5 KiB
Python
167 lines
6.5 KiB
Python
|
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# =============================================================================
|
||
|
|
||
|
import os
|
||
|
import argparse
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
class ReLUConvBN(nn.Module):
|
||
|
|
||
|
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, affine, track_running_stats=True, use_bn=True, name='ReLUConvBN'):
|
||
|
super(ReLUConvBN, self).__init__()
|
||
|
self.name = name
|
||
|
if use_bn:
|
||
|
self.op = nn.Sequential(
|
||
|
nn.ReLU(inplace=False),
|
||
|
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine),
|
||
|
nn.BatchNorm2d(out_channels, affine=affine, track_running_stats=track_running_stats)
|
||
|
)
|
||
|
else:
|
||
|
self.op = nn.Sequential(
|
||
|
nn.ReLU(inplace=False),
|
||
|
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.op(x)
|
||
|
|
||
|
class Identity(nn.Module):
|
||
|
def __init__(self, name='Identity'):
|
||
|
self.name = name
|
||
|
super(Identity, self).__init__()
|
||
|
|
||
|
def forward(self, x):
|
||
|
return x
|
||
|
|
||
|
class Zero(nn.Module):
|
||
|
|
||
|
def __init__(self, stride, name='Zero'):
|
||
|
self.name = name
|
||
|
super(Zero, self).__init__()
|
||
|
self.stride = stride
|
||
|
|
||
|
def forward(self, x):
|
||
|
if self.stride == 1:
|
||
|
return x.mul(0.)
|
||
|
return x[:,:,::self.stride,::self.stride].mul(0.)
|
||
|
|
||
|
class POOLING(nn.Module):
|
||
|
def __init__(self, kernel_size, stride, padding, name='POOLING'):
|
||
|
super(POOLING, self).__init__()
|
||
|
self.name = name
|
||
|
self.avgpool = nn.AvgPool2d(kernel_size=kernel_size, stride=1, padding=1, count_include_pad=False)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.avgpool(x)
|
||
|
|
||
|
|
||
|
class reduction(nn.Module):
|
||
|
def __init__(self, in_channels, out_channels):
|
||
|
super(reduction, self).__init__()
|
||
|
self.residual = nn.Sequential(
|
||
|
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||
|
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, bias=False))
|
||
|
|
||
|
self.conv_a = ReLUConvBN(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1, dilation=1, affine=True, track_running_stats=True)
|
||
|
self.conv_b = ReLUConvBN(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, dilation=1, affine=True, track_running_stats=True)
|
||
|
|
||
|
def forward(self, x):
|
||
|
basicblock = self.conv_a(x)
|
||
|
basicblock = self.conv_b(basicblock)
|
||
|
residual = self.residual(x)
|
||
|
return residual + basicblock
|
||
|
|
||
|
class stem(nn.Module):
|
||
|
def __init__(self, out_channels, use_bn=True):
|
||
|
super(stem, self).__init__()
|
||
|
if use_bn:
|
||
|
self.net = nn.Sequential(
|
||
|
nn.Conv2d(in_channels=3, out_channels=out_channels, kernel_size=3, padding=1, bias=False),
|
||
|
nn.BatchNorm2d(out_channels))
|
||
|
else:
|
||
|
self.net = nn.Sequential(
|
||
|
nn.Conv2d(in_channels=3, out_channels=out_channels, kernel_size=3, padding=1, bias=False)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.net(x)
|
||
|
|
||
|
class top(nn.Module):
|
||
|
# def __init__(self, in_dims, num_classes, use_bn=True):
|
||
|
def __init__(self, in_dims, use_bn=True):
|
||
|
super(top, self).__init__()
|
||
|
if use_bn:
|
||
|
self.lastact = nn.Sequential(nn.BatchNorm2d(in_dims), nn.ReLU(inplace=True))
|
||
|
else:
|
||
|
self.lastact = nn.ReLU(inplace=True)
|
||
|
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||
|
# self.classifier = nn.Linear(in_dims, num_classes)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.lastact(x)
|
||
|
x = self.global_pooling(x)
|
||
|
x = x.view(x.size(0), -1)
|
||
|
# logits = self.classifier(x)
|
||
|
# return logits
|
||
|
return x
|
||
|
|
||
|
|
||
|
class SearchCell(nn.Module):
|
||
|
|
||
|
def __init__(self, in_channels, out_channels, stride, affine, track_running_stats, use_bn=True, num_nodes=4, keep_mask=None):
|
||
|
super(SearchCell, self).__init__()
|
||
|
self.num_nodes = num_nodes
|
||
|
self.options = nn.ModuleList()
|
||
|
for curr_node in range(self.num_nodes-1):
|
||
|
for prev_node in range(curr_node+1):
|
||
|
for _op_name in OPS.keys():
|
||
|
op = OPS[_op_name](in_channels, out_channels, stride, affine, track_running_stats, use_bn)
|
||
|
self.options.append(op)
|
||
|
|
||
|
if keep_mask is not None:
|
||
|
self.keep_mask = keep_mask
|
||
|
else:
|
||
|
self.keep_mask = [True]*len(self.options)
|
||
|
|
||
|
def forward(self, x):
|
||
|
outs = [x]
|
||
|
|
||
|
idx = 0
|
||
|
for curr_node in range(self.num_nodes-1):
|
||
|
edges_in = []
|
||
|
for prev_node in range(curr_node+1): # n-1 prev nodes
|
||
|
for op_idx in range(len(OPS.keys())):
|
||
|
if self.keep_mask[idx]:
|
||
|
edges_in.append(self.options[idx](outs[prev_node]))
|
||
|
idx += 1
|
||
|
node_output = sum(edges_in)
|
||
|
outs.append(node_output)
|
||
|
|
||
|
return outs[-1]
|
||
|
|
||
|
|
||
|
|
||
|
OPS = {
|
||
|
'none' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: Zero(stride, name='none'),
|
||
|
'avg_pool_3x3' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: POOLING(3, 1, 1, name='avg_pool_3x3'),
|
||
|
'nor_conv_3x3' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: ReLUConvBN(in_channels, out_channels, 3, 1, 1, 1, affine, track_running_stats, use_bn, name='nor_conv_3x3'),
|
||
|
'nor_conv_1x1' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: ReLUConvBN(in_channels, out_channels, 1, 1, 0, 1, affine, track_running_stats, use_bn, name='nor_conv_1x1'),
|
||
|
'skip_connect' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: Identity(name='skip_connect'),
|
||
|
}
|
||
|
|
||
|
|