MeCo/correlation/models/cell_operations.py

554 lines
17 KiB
Python
Raw Permalink Normal View History

2024-01-23 03:08:45 +01:00
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import torch
import torch.nn as nn
__all__ = ["OPS", "RAW_OP_CLASSES", "ResNetBasicblock", "SearchSpaceNames"]
OPS = {
"none": lambda C_in, C_out, stride, affine, track_running_stats: Zero(
C_in, C_out, stride
),
"avg_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING(
C_in, C_out, stride, "avg", affine, track_running_stats
),
"max_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING(
C_in, C_out, stride, "max", affine, track_running_stats
),
"nor_conv_7x7": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
C_in,
C_out,
(7, 7),
(stride, stride),
(3, 3),
(1, 1),
affine,
track_running_stats,
),
"nor_conv_3x3": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
C_in,
C_out,
(3, 3),
(stride, stride),
(1, 1),
(1, 1),
affine,
track_running_stats,
),
"nor_conv_1x1": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
C_in,
C_out,
(1, 1),
(stride, stride),
(0, 0),
(1, 1),
affine,
track_running_stats,
),
"dua_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(
C_in,
C_out,
(3, 3),
(stride, stride),
(1, 1),
(1, 1),
affine,
track_running_stats,
),
"dua_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(
C_in,
C_out,
(5, 5),
(stride, stride),
(2, 2),
(1, 1),
affine,
track_running_stats,
),
"dil_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: SepConv(
C_in,
C_out,
(3, 3),
(stride, stride),
(2, 2),
(2, 2),
affine,
track_running_stats,
),
"dil_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: SepConv(
C_in,
C_out,
(5, 5),
(stride, stride),
(4, 4),
(2, 2),
affine,
track_running_stats,
),
"skip_connect": lambda C_in, C_out, stride, affine, track_running_stats: Identity()
if stride == 1 and C_in == C_out
else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats),
}
CONNECT_NAS_BENCHMARK = ["none", "skip_connect", "nor_conv_3x3"]
NAS_BENCH_201 = ["none", "skip_connect", "nor_conv_1x1", "nor_conv_3x3", "avg_pool_3x3"]
DARTS_SPACE = [
"none",
"skip_connect",
"dua_sepc_3x3",
"dua_sepc_5x5",
"dil_sepc_3x3",
"dil_sepc_5x5",
"avg_pool_3x3",
"max_pool_3x3",
]
SearchSpaceNames = {
"connect-nas": CONNECT_NAS_BENCHMARK,
"nats-bench": NAS_BENCH_201,
"nas-bench-201": NAS_BENCH_201,
"darts": DARTS_SPACE,
}
class ReLUConvBN(nn.Module):
def __init__(
self,
C_in,
C_out,
kernel_size,
stride,
padding,
dilation,
affine,
track_running_stats=True,
):
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(
C_in,
C_out,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=not affine,
),
nn.BatchNorm2d(
C_out, affine=affine, track_running_stats=track_running_stats
),
)
def forward(self, x):
return self.op(x)
class SepConv(nn.Module):
def __init__(
self,
C_in,
C_out,
kernel_size,
stride,
padding,
dilation,
affine,
track_running_stats=True,
):
super(SepConv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(
C_in,
C_in,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=C_in,
bias=False,
),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=not affine),
nn.BatchNorm2d(
C_out, affine=affine, track_running_stats=track_running_stats
),
)
def forward(self, x):
return self.op(x)
class DualSepConv(nn.Module):
def __init__(
self,
C_in,
C_out,
kernel_size,
stride,
padding,
dilation,
affine,
track_running_stats=True,
):
super(DualSepConv, self).__init__()
self.op_a = SepConv(
C_in,
C_in,
kernel_size,
stride,
padding,
dilation,
affine,
track_running_stats,
)
self.op_b = SepConv(
C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats
)
def forward(self, x):
x = self.op_a(x)
x = self.op_b(x)
return x
class ResNetBasicblock(nn.Module):
def __init__(self, inplanes, planes, stride, affine=True, track_running_stats=True):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_a = ReLUConvBN(
inplanes, planes, 3, stride, 1, 1, affine, track_running_stats
)
self.conv_b = ReLUConvBN(
planes, planes, 3, 1, 1, 1, affine, track_running_stats
)
if stride == 2:
self.downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(
inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False
),
)
elif inplanes != planes:
self.downsample = ReLUConvBN(
inplanes, planes, 1, 1, 0, 1, affine, track_running_stats
)
else:
self.downsample = None
self.in_dim = inplanes
self.out_dim = planes
self.stride = stride
self.num_conv = 2
def extra_repr(self):
string = "{name}(inC={in_dim}, outC={out_dim}, stride={stride})".format(
name=self.__class__.__name__, **self.__dict__
)
return string
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
return residual + basicblock
class POOLING(nn.Module):
def __init__(
self, C_in, C_out, stride, mode, affine=True, track_running_stats=True
):
super(POOLING, self).__init__()
if C_in == C_out:
self.preprocess = None
else:
self.preprocess = ReLUConvBN(
C_in, C_out, 1, 1, 0, 1, affine, track_running_stats
)
if mode == "avg":
self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
elif mode == "max":
self.op = nn.MaxPool2d(3, stride=stride, padding=1)
else:
raise ValueError("Invalid mode={:} in POOLING".format(mode))
def forward(self, inputs):
if self.preprocess:
x = self.preprocess(inputs)
else:
x = inputs
return self.op(x)
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class Zero(nn.Module):
def __init__(self, C_in, C_out, stride):
super(Zero, self).__init__()
self.C_in = C_in
self.C_out = C_out
self.stride = stride
self.is_zero = True
def forward(self, x):
if self.C_in == self.C_out:
if self.stride == 1:
return x.mul(0.0)
else:
return x[:, :, :: self.stride, :: self.stride].mul(0.0)
else:
shape = list(x.shape)
shape[1] = self.C_out
zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
return zeros
def extra_repr(self):
return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__)
class FactorizedReduce(nn.Module):
def __init__(self, C_in, C_out, stride, affine, track_running_stats):
super(FactorizedReduce, self).__init__()
self.stride = stride
self.C_in = C_in
self.C_out = C_out
self.relu = nn.ReLU(inplace=False)
if stride == 2:
# assert C_out % 2 == 0, 'C_out : {:}'.format(C_out)
C_outs = [C_out // 2, C_out - C_out // 2]
self.convs = nn.ModuleList()
for i in range(2):
self.convs.append(
nn.Conv2d(
C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine
)
)
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
elif stride == 1:
self.conv = nn.Conv2d(
C_in, C_out, 1, stride=stride, padding=0, bias=not affine
)
else:
raise ValueError("Invalid stride : {:}".format(stride))
self.bn = nn.BatchNorm2d(
C_out, affine=affine, track_running_stats=track_running_stats
)
def forward(self, x):
if self.stride == 2:
x = self.relu(x)
y = self.pad(x)
out = torch.cat([self.convs[0](x), self.convs[1](y[:, :, 1:, 1:])], dim=1)
else:
out = self.conv(x)
out = self.bn(out)
return out
def extra_repr(self):
return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__)
# Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019
class PartAwareOp(nn.Module):
def __init__(self, C_in, C_out, stride, part=4):
super().__init__()
self.part = 4
self.hidden = C_in // 3
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.local_conv_list = nn.ModuleList()
for i in range(self.part):
self.local_conv_list.append(
nn.Sequential(
nn.ReLU(),
nn.Conv2d(C_in, self.hidden, 1),
nn.BatchNorm2d(self.hidden, affine=True),
)
)
self.W_K = nn.Linear(self.hidden, self.hidden)
self.W_Q = nn.Linear(self.hidden, self.hidden)
if stride == 2:
self.last = FactorizedReduce(C_in + self.hidden, C_out, 2)
elif stride == 1:
self.last = FactorizedReduce(C_in + self.hidden, C_out, 1)
else:
raise ValueError("Invalid Stride : {:}".format(stride))
def forward(self, x):
batch, C, H, W = x.size()
assert H >= self.part, "input size too small : {:} vs {:}".format(
x.shape, self.part
)
IHs = [0]
for i in range(self.part):
IHs.append(min(H, int((i + 1) * (float(H) / self.part))))
local_feat_list = []
for i in range(self.part):
feature = x[:, :, IHs[i] : IHs[i + 1], :]
xfeax = self.avg_pool(feature)
xfea = self.local_conv_list[i](xfeax)
local_feat_list.append(xfea)
part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part)
part_feature = part_feature.transpose(1, 2).contiguous()
part_K = self.W_K(part_feature)
part_Q = self.W_Q(part_feature).transpose(1, 2).contiguous()
weight_att = torch.bmm(part_K, part_Q)
attention = torch.softmax(weight_att, dim=2)
aggreateF = torch.bmm(attention, part_feature).transpose(1, 2).contiguous()
features = []
for i in range(self.part):
feature = aggreateF[:, :, i : i + 1].expand(
batch, self.hidden, IHs[i + 1] - IHs[i]
)
feature = feature.view(batch, self.hidden, IHs[i + 1] - IHs[i], 1)
features.append(feature)
features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W)
final_fea = torch.cat((x, features), dim=1)
outputs = self.last(final_fea)
return outputs
def drop_path(x, drop_prob):
if drop_prob > 0.0:
keep_prob = 1.0 - drop_prob
mask = x.new_zeros(x.size(0), 1, 1, 1)
mask = mask.bernoulli_(keep_prob)
x = torch.div(x, keep_prob)
x.mul_(mask)
return x
# Searching for A Robust Neural Architecture in Four GPU Hours
class GDAS_Reduction_Cell(nn.Module):
def __init__(
self, C_prev_prev, C_prev, C, reduction_prev, affine, track_running_stats
):
super(GDAS_Reduction_Cell, self).__init__()
if reduction_prev:
self.preprocess0 = FactorizedReduce(
C_prev_prev, C, 2, affine, track_running_stats
)
else:
self.preprocess0 = ReLUConvBN(
C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats
)
self.preprocess1 = ReLUConvBN(
C_prev, C, 1, 1, 0, 1, affine, track_running_stats
)
self.reduction = True
self.ops1 = nn.ModuleList(
[
nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(
C,
C,
(1, 3),
stride=(1, 2),
padding=(0, 1),
groups=8,
bias=not affine,
),
nn.Conv2d(
C,
C,
(3, 1),
stride=(2, 1),
padding=(1, 0),
groups=8,
bias=not affine,
),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
),
nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(
C,
C,
(1, 3),
stride=(1, 2),
padding=(0, 1),
groups=8,
bias=not affine,
),
nn.Conv2d(
C,
C,
(3, 1),
stride=(2, 1),
padding=(1, 0),
groups=8,
bias=not affine,
),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
),
]
)
self.ops2 = nn.ModuleList(
[
nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
),
nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
),
]
)
@property
def multiplier(self):
return 4
def forward(self, s0, s1, drop_prob=-1):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
X0 = self.ops1[0](s0)
X1 = self.ops1[1](s1)
if self.training and drop_prob > 0.0:
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
# X2 = self.ops2[0] (X0+X1)
X2 = self.ops2[0](s0)
X3 = self.ops2[1](s1)
if self.training and drop_prob > 0.0:
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
return torch.cat([X0, X1, X2, X3], dim=1)
# To manage the useful classes in this file.
RAW_OP_CLASSES = {"gdas_reduction": GDAS_Reduction_Cell}