MeCo/correlation/models/CifarWideResNet.py

116 lines
3.6 KiB
Python
Raw Normal View History

2024-01-23 03:08:45 +01:00
import torch
import torch.nn as nn
import torch.nn.functional as F
from .initialization import initialize_resnet
class WideBasicblock(nn.Module):
def __init__(self, inplanes, planes, stride, dropout=False):
super(WideBasicblock, self).__init__()
self.bn_a = nn.BatchNorm2d(inplanes)
self.conv_a = nn.Conv2d(
inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn_b = nn.BatchNorm2d(planes)
if dropout:
self.dropout = nn.Dropout2d(p=0.5, inplace=True)
else:
self.dropout = None
self.conv_b = nn.Conv2d(
planes, planes, kernel_size=3, stride=1, padding=1, bias=False
)
if inplanes != planes:
self.downsample = nn.Conv2d(
inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False
)
else:
self.downsample = None
def forward(self, x):
basicblock = self.bn_a(x)
basicblock = F.relu(basicblock)
basicblock = self.conv_a(basicblock)
basicblock = self.bn_b(basicblock)
basicblock = F.relu(basicblock)
if self.dropout is not None:
basicblock = self.dropout(basicblock)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
x = self.downsample(x)
return x + basicblock
class CifarWideResNet(nn.Module):
"""
ResNet optimized for the Cifar dataset, as specified in
https://arxiv.org/abs/1512.03385.pdf
"""
def __init__(self, depth, widen_factor, num_classes, dropout):
super(CifarWideResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
assert (depth - 4) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
layer_blocks = (depth - 4) // 6
print(
"CifarPreResNet : Depth : {} , Layers for each block : {}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.dropout = dropout
self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.message = "Wide ResNet : depth={:}, widen_factor={:}, class={:}".format(
depth, widen_factor, num_classes
)
self.inplanes = 16
self.stage_1 = self._make_layer(
WideBasicblock, 16 * widen_factor, layer_blocks, 1
)
self.stage_2 = self._make_layer(
WideBasicblock, 32 * widen_factor, layer_blocks, 2
)
self.stage_3 = self._make_layer(
WideBasicblock, 64 * widen_factor, layer_blocks, 2
)
self.lastact = nn.Sequential(
nn.BatchNorm2d(64 * widen_factor), nn.ReLU(inplace=True)
)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(64 * widen_factor, num_classes)
self.apply(initialize_resnet)
def get_message(self):
return self.message
def _make_layer(self, block, planes, blocks, stride):
layers = []
layers.append(block(self.inplanes, planes, stride, self.dropout))
self.inplanes = planes
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, 1, self.dropout))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv_3x3(x)
x = self.stage_1(x)
x = self.stage_2(x)
x = self.stage_3(x)
x = self.lastact(x)
x = self.avgpool(x)
features = x.view(x.size(0), -1)
outs = self.classifier(features)
return features, outs