update
This commit is contained in:
		| @@ -11,24 +11,60 @@ from models import get_cell_based_tiny_net | ||||
| import pickle | ||||
|  | ||||
|  | ||||
| def get_score(net, x, device, measure='meco'): | ||||
|     result_list = [] | ||||
|  | ||||
|     def forward_hook(module, data_input, data_output): | ||||
|         fea = data_output[0].clone().detach() | ||||
|         n = torch.tensor(fea.shape[0]) | ||||
|         fea = fea.reshape(n, -1) | ||||
|         if measure == 'meco': | ||||
|             corr = torch.corrcoef(fea) | ||||
|             corr[torch.isnan(corr)] = 0 | ||||
|             corr[torch.isinf(corr)] = 0 | ||||
|             values = torch.linalg.eig(corr)[0] | ||||
|             result = torch.min(torch.real(values)) | ||||
|         elif measure == 'meco_opt': | ||||
|             idxs = random.sample(range(n), 8) | ||||
|             fea = fea[idxs, :] | ||||
|             corr = torch.corrcoef(fea) | ||||
|             corr[torch.isnan(corr)] = 0 | ||||
|             corr[torch.isinf(corr)] = 0 | ||||
|             values = torch.linalg.eig(corr)[0] | ||||
|             result = torch.min(torch.real(values)) * n / 8 | ||||
|         result_list.append(result) | ||||
|     for name, modules in net.named_modules(): | ||||
|         modules.register_forward_hook(forward_hook) | ||||
|     x = x.to(device) | ||||
|     net(x) | ||||
|     results = torch.tensor(result_list) | ||||
|     results = results[torch.logical_not(torch.isnan(results))] | ||||
|     results = results[torch.logical_not(torch.isinf(results))] | ||||
|     res = torch.sum(results) | ||||
|     result_list.clear() | ||||
|  | ||||
|     return res.item() | ||||
|  | ||||
| def get_num_classes(args): | ||||
|     return 100 if args.dataset == 'cifar100' else 10 if args.dataset == 'cifar10' else 120 | ||||
|  | ||||
|  | ||||
| def parse_arguments(): | ||||
|     parser = argparse.ArgumentParser(description='Zero-cost Metrics for NAS-Bench-201') | ||||
|     parser.add_argument('--api_loc', default='../data/NAS-Bench-201-v1_0-e61699.pth', | ||||
|                         type=str, help='path to API') | ||||
|     # parser.add_argument('--api_loc', default='../data/NAS-Bench-201-v1_0-e61699.pth', | ||||
|     #                     type=str, help='path to API') | ||||
|     parser.add_argument('--outdir', default='./', | ||||
|                         type=str, help='output directory') | ||||
|     parser.add_argument('--search_space', type=str, default='tss', choices=['tss', 'sss']) | ||||
|     parser.add_argument('--init_w_type', type=str, default='none', | ||||
|                         help='weight initialization (before pruning) type [none, xavier, kaiming, zero, one]') | ||||
|     parser.add_argument('--init_b_type', type=str, default='none', | ||||
|                         help='bias initialization (before pruning) type [none, xavier, kaiming, zero, one]') | ||||
|     parser.add_argument('--batch_size', default=64, type=int) | ||||
|     parser.add_argument('--dataset', type=str, default='ImageNet16-120', | ||||
|     parser.add_argument('--measure', type=str, default='meco', choices=['meco', 'meco_opt']) | ||||
|     parser.add_argument('--batch_size', default=1, type=int) | ||||
|     parser.add_argument('--dataset', type=str, default='cifar10', | ||||
|                         help='dataset to use [cifar10, cifar100, ImageNet16-120]') | ||||
|     parser.add_argument('--gpu', type=int, default=5, help='GPU index to work on') | ||||
|     parser.add_argument('--gpu', type=int, default=0, help='GPU index to work on') | ||||
|     parser.add_argument('--data_size', type=int, default=32, help='data_size') | ||||
|     parser.add_argument('--num_data_workers', type=int, default=2, help='number of workers for dataloaders') | ||||
|     parser.add_argument('--dataload', type=str, default='appoint', help='random, grasp, appoint supported') | ||||
| @@ -49,11 +85,9 @@ if __name__ == '__main__': | ||||
|     args = parse_arguments() | ||||
|     print(args.device) | ||||
|  | ||||
|     if args.noacc: | ||||
|         api = pickle.load(open(args.api_loc,'rb')) | ||||
|     else: | ||||
|         from nas_201_api import NASBench201API as API | ||||
|         api = API(args.api_loc) | ||||
|     from nats_bench import create | ||||
|  | ||||
|     api = create(None, args.search_space, fast_mode=True, verbose=False) | ||||
|  | ||||
|     torch.manual_seed(args.seed) | ||||
|     torch.backends.cudnn.deterministic = True | ||||
| @@ -61,9 +95,6 @@ if __name__ == '__main__': | ||||
|  | ||||
|     train_loader, val_loader = get_cifar_dataloaders(args.batch_size, args.batch_size, args.dataset, args.num_data_workers, resize=args.data_size) | ||||
|     x, y = next(iter(train_loader)) | ||||
|     # random data | ||||
|     # x = torch.rand((args.batch_size, 3, args.data_size, args.data_size)) | ||||
|     # y = 0 | ||||
|  | ||||
|     cached_res = [] | ||||
|     pre = 'cf' if 'cifar' in args.dataset else 'im' | ||||
| @@ -81,7 +112,6 @@ if __name__ == '__main__': | ||||
|             break | ||||
|  | ||||
|         res = {'i': i, 'arch': arch_str} | ||||
|         # print(arch_str) | ||||
|         if args.search_space == 'tss': | ||||
|             net = nasbench2.get_model_from_arch_str(arch_str, get_num_classes(args)) | ||||
|             arch_str2 = nasbench2.get_arch_str_from_model(net) | ||||
| @@ -91,21 +121,22 @@ if __name__ == '__main__': | ||||
|                 raise ValueError | ||||
|         elif args.search_space == 'sss': | ||||
|             config = api.get_net_config(i, args.dataset) | ||||
|             # print(config) | ||||
|             net = get_cell_based_tiny_net(config) | ||||
|         net.to(args.device) | ||||
|         # print(net) | ||||
|  | ||||
|         init_net(net, args.init_w_type, args.init_b_type) | ||||
|  | ||||
|         # print(x.size(), y) | ||||
|         measures = get_score(net, x, i, args.device) | ||||
|         measures = get_score(net, x, args.device, measure=args.measure) | ||||
|  | ||||
|         res['meco'] = measures | ||||
|         res[f'{args.measure}'] = measures | ||||
|  | ||||
|         if not args.noacc: | ||||
|             info = api.get_more_info(i, 'cifar10-valid' if args.dataset == 'cifar10' else args.dataset, iepoch=None, | ||||
|                                      hp='200', is_random=False) | ||||
|             if args.search_space == 'tss': | ||||
|                 info = api.get_more_info(i, 'cifar10-valid' if args.dataset == 'cifar10' else args.dataset, iepoch=None, | ||||
|                                          hp='200', is_random=False) | ||||
|             else: | ||||
|                 info = api.get_more_info(i, 'cifar10-valid' if args.dataset == 'cifar10' else args.dataset, iepoch=None, | ||||
|                                          hp='90', is_random=False) | ||||
|  | ||||
|             trainacc = info['train-accuracy'] | ||||
|             valacc = info['valid-accuracy'] | ||||
|   | ||||
							
								
								
									
										24
									
								
								correlation/compute_rho.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								correlation/compute_rho.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | ||||
| import pandas as pd | ||||
| import pickle | ||||
|  | ||||
| # path = 'result/sss_cf10_meco.p' | ||||
| path = 'nb2_sss_cf10_seed42_dlappoint_dlinfo1_initwnone_initbnone_1.p' | ||||
| meco = [] | ||||
| accs = [] | ||||
| with open(path, 'rb') as f: | ||||
|     while True: | ||||
|         try: | ||||
|             fl = pickle.load(f) | ||||
|             meco.append(fl['meco']) | ||||
|             accs.append(fl['testacc']) | ||||
|         except: | ||||
|             break | ||||
|  | ||||
| N = len(meco) | ||||
| print(N) | ||||
| df = pd.DataFrame({ | ||||
|     'meco':meco[:N], | ||||
|     'acc': accs[:N] | ||||
|     }) | ||||
| print(df.corr(method='spearman')) | ||||
|  | ||||
							
								
								
									
										16
									
								
								correlation/foresight/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								correlation/foresight/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,16 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| from .version import * | ||||
							
								
								
									
										133
									
								
								correlation/foresight/dataset.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										133
									
								
								correlation/foresight/dataset.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,133 @@ | ||||
|  | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
|  | ||||
| from torchvision.datasets import MNIST, CIFAR10, CIFAR100, SVHN | ||||
| from torchvision.transforms import Compose, ToTensor, Normalize | ||||
| from torchvision import transforms | ||||
| from torch.utils.data import TensorDataset, DataLoader | ||||
| import torch | ||||
|  | ||||
| from .imagenet16 import * | ||||
|  | ||||
|  | ||||
| def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_workers, resize=None, datadir='_dataset'): | ||||
|     # print(dataset) | ||||
|     if 'ImageNet16' in dataset: | ||||
|         mean = [x / 255 for x in [122.68, 116.66, 104.01]] | ||||
|         std  = [x / 255 for x in [63.22,  61.26 , 65.09]] | ||||
|         size, pad = 16, 2 | ||||
|     elif 'cifar' in dataset: | ||||
|         mean = (0.4914, 0.4822, 0.4465) | ||||
|         std = (0.2023, 0.1994, 0.2010) | ||||
|         size, pad = 32, 4 | ||||
|     elif 'svhn' in dataset: | ||||
|         mean = (0.5, 0.5, 0.5) | ||||
|         std = (0.5, 0.5, 0.5) | ||||
|         size, pad = 32, 0 | ||||
|     elif dataset == 'ImageNet1k': | ||||
|         from .h5py_dataset import H5Dataset | ||||
|         size,pad = 224,2 | ||||
|         mean = (0.485, 0.456, 0.406) | ||||
|         std  = (0.229, 0.224, 0.225) | ||||
|         #resize = 256 | ||||
|     elif 'random' in dataset: | ||||
|         mean = (0.5, 0.5, 0.5) | ||||
|         std = (1, 1, 1) | ||||
|         size, pad = 32, 0 | ||||
|  | ||||
|     if resize is None: | ||||
|         resize = size | ||||
|  | ||||
|     train_transform = transforms.Compose([ | ||||
|         transforms.RandomCrop(size, padding=pad), | ||||
|         transforms.Resize(resize), | ||||
|         transforms.RandomHorizontalFlip(), | ||||
|         transforms.ToTensor(), | ||||
|         transforms.Normalize(mean,std), | ||||
|     ]) | ||||
|  | ||||
|     test_transform = transforms.Compose([ | ||||
|         transforms.Resize(resize), | ||||
|         transforms.ToTensor(), | ||||
|         transforms.Normalize(mean,std), | ||||
|     ]) | ||||
|  | ||||
|     if dataset == 'cifar10': | ||||
|         train_dataset = CIFAR10(datadir, True, train_transform, download=True) | ||||
|         test_dataset = CIFAR10(datadir, False, test_transform, download=True) | ||||
|     elif dataset == 'cifar100': | ||||
|         train_dataset = CIFAR100(datadir, True, train_transform, download=True) | ||||
|         test_dataset = CIFAR100(datadir, False, test_transform, download=True) | ||||
|     elif dataset == 'svhn': | ||||
|         train_dataset = SVHN(datadir, split='train', transform=train_transform, download=True) | ||||
|         test_dataset = SVHN(datadir, split='test', transform=test_transform, download=True) | ||||
|     elif dataset == 'ImageNet16-120': | ||||
|         train_dataset = ImageNet16(os.path.join(datadir, 'ImageNet16'), True , train_transform, 120) | ||||
|         test_dataset  = ImageNet16(os.path.join(datadir, 'ImageNet16'), False, test_transform , 120) | ||||
|     elif dataset == 'ImageNet1k': | ||||
|         train_dataset = H5Dataset(os.path.join(datadir, 'imagenet-train-256.h5'), transform=train_transform) | ||||
|         test_dataset  = H5Dataset(os.path.join(datadir, 'imagenet-val-256.h5'),   transform=test_transform) | ||||
|              | ||||
|     else: | ||||
|         raise ValueError('There are no more cifars or imagenets.') | ||||
|  | ||||
|     train_loader = DataLoader( | ||||
|         train_dataset, | ||||
|         train_batch_size, | ||||
|         shuffle=True, | ||||
|         num_workers=num_workers, | ||||
|         pin_memory=True) | ||||
|     test_loader = DataLoader( | ||||
|         test_dataset, | ||||
|         test_batch_size, | ||||
|         shuffle=False, | ||||
|         num_workers=num_workers, | ||||
|         pin_memory=True) | ||||
|  | ||||
|  | ||||
|     return train_loader, test_loader | ||||
|  | ||||
|  | ||||
| def get_mnist_dataloaders(train_batch_size, val_batch_size, num_workers): | ||||
|  | ||||
|     data_transform = Compose([transforms.ToTensor()]) | ||||
|  | ||||
|     # Normalise? transforms.Normalize((0.1307,), (0.3081,)) | ||||
|  | ||||
|     train_dataset = MNIST("_dataset", True, data_transform, download=True) | ||||
|     test_dataset = MNIST("_dataset", False, data_transform, download=True) | ||||
|  | ||||
|     train_loader = DataLoader( | ||||
|         train_dataset, | ||||
|         train_batch_size, | ||||
|         shuffle=True, | ||||
|         num_workers=num_workers, | ||||
|         pin_memory=True) | ||||
|     test_loader = DataLoader( | ||||
|         test_dataset, | ||||
|         val_batch_size, | ||||
|         shuffle=False, | ||||
|         num_workers=num_workers, | ||||
|         pin_memory=True) | ||||
|  | ||||
|     return train_loader, test_loader | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     tr, te = get_cifar_dataloaders(64, 64, 'random', 2, resize=None, datadir='_dataset') | ||||
|     for x, y in tr: | ||||
|         print(x.size(), y.size()) | ||||
|         break | ||||
							
								
								
									
										55
									
								
								correlation/foresight/h5py_dataset.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										55
									
								
								correlation/foresight/h5py_dataset.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,55 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import h5py | ||||
| import numpy as np | ||||
| from PIL import Image | ||||
|  | ||||
|  | ||||
| import torch | ||||
| from torch.utils.data import Dataset, DataLoader | ||||
|  | ||||
| class H5Dataset(Dataset): | ||||
|     def __init__(self, h5_path, transform=None): | ||||
|         self.h5_path = h5_path | ||||
|         self.h5_file = None | ||||
|         self.length = len(h5py.File(h5_path, 'r')) | ||||
|         self.transform = transform | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|  | ||||
|         #loading in getitem allows us to use multiple processes for data loading | ||||
|         #because hdf5 files aren't pickelable so can't transfer them across processes | ||||
|         # https://discuss.pytorch.org/t/hdf5-a-data-format-for-pytorch/40379 | ||||
|         # https://discuss.pytorch.org/t/dataloader-when-num-worker-0-there-is-bug/25643/16 | ||||
|         # TODO possible look at __getstate__ and __setstate__ as a more elegant solution | ||||
|         if self.h5_file is None: | ||||
|             self.h5_file = h5py.File(self.h5_path, 'r') | ||||
|  | ||||
|         record = self.h5_file[str(index)] | ||||
|  | ||||
|         if self.transform: | ||||
|             x = Image.fromarray(record['data'][()]) | ||||
|             x = self.transform(x) | ||||
|         else: | ||||
|             x = torch.from_numpy(record['data'][()]) | ||||
|  | ||||
|         y = record['target'][()] | ||||
|         y = torch.from_numpy(np.asarray(y)) | ||||
|  | ||||
|         return (x,y) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return self.length | ||||
							
								
								
									
										142
									
								
								correlation/foresight/imagenet16.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										142
									
								
								correlation/foresight/imagenet16.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,142 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import hashlib | ||||
| import os | ||||
| import sys | ||||
|  | ||||
| import numpy as np | ||||
| import torch.utils.data as data | ||||
| from PIL import Image | ||||
|  | ||||
| if sys.version_info[0] == 2: | ||||
|     import cPickle as pickle | ||||
| else: | ||||
|     import pickle | ||||
|  | ||||
|  | ||||
| def calculate_md5(fpath, chunk_size=1024 * 1024): | ||||
|     md5 = hashlib.md5() | ||||
|     with open(fpath, 'rb') as f: | ||||
|         for chunk in iter(lambda: f.read(chunk_size), b''): | ||||
|             md5.update(chunk) | ||||
|     return md5.hexdigest() | ||||
|  | ||||
|  | ||||
| def check_md5(fpath, md5, **kwargs): | ||||
|     return md5 == calculate_md5(fpath, **kwargs) | ||||
|  | ||||
|  | ||||
| def check_integrity(fpath, md5=None): | ||||
|     if not os.path.isfile(fpath): | ||||
|         print(fpath) | ||||
|         return False | ||||
|     if md5 is None: | ||||
|         return True | ||||
|     else: | ||||
|         return check_md5(fpath, md5) | ||||
|  | ||||
|  | ||||
| class ImageNet16(data.Dataset): | ||||
|     # http://image-net.org/download-images | ||||
|     # A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets | ||||
|     # https://arxiv.org/pdf/1707.08819.pdf | ||||
|  | ||||
|     train_list = [ | ||||
|         ['train_data_batch_1', '27846dcaa50de8e21a7d1a35f30f0e91'], | ||||
|         ['train_data_batch_2', 'c7254a054e0e795c69120a5727050e3f'], | ||||
|         ['train_data_batch_3', '4333d3df2e5ffb114b05d2ffc19b1e87'], | ||||
|         ['train_data_batch_4', '1620cdf193304f4a92677b695d70d10f'], | ||||
|         ['train_data_batch_5', '348b3c2fdbb3940c4e9e834affd3b18d'], | ||||
|         ['train_data_batch_6', '6e765307c242a1b3d7d5ef9139b48945'], | ||||
|         ['train_data_batch_7', '564926d8cbf8fc4818ba23d2faac7564'], | ||||
|         ['train_data_batch_8', 'f4755871f718ccb653440b9dd0ebac66'], | ||||
|         ['train_data_batch_9', 'bb6dd660c38c58552125b1a92f86b5d4'], | ||||
|         ['train_data_batch_10', '8f03f34ac4b42271a294f91bf480f29b'], | ||||
|     ] | ||||
|     valid_list = [ | ||||
|         ['val_data', '3410e3017fdaefba8d5073aaa65e4bd6'], | ||||
|     ] | ||||
|  | ||||
|     def __init__(self, root, train, transform, use_num_of_class_only=None): | ||||
|         self.root = root | ||||
|         self.transform = transform | ||||
|         self.train = train  # training set or valid set | ||||
|         if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.') | ||||
|  | ||||
|         if self.train: | ||||
|             downloaded_list = self.train_list | ||||
|         else: | ||||
|             downloaded_list = self.valid_list | ||||
|         self.data = [] | ||||
|         self.targets = [] | ||||
|  | ||||
|         # now load the picked numpy arrays | ||||
|         for i, (file_name, checksum) in enumerate(downloaded_list): | ||||
|             file_path = os.path.join(self.root, file_name) | ||||
|             # print ('Load {:}/{:02d}-th : {:}'.format(i, len(downloaded_list), file_path)) | ||||
|             with open(file_path, 'rb') as f: | ||||
|                 if sys.version_info[0] == 2: | ||||
|                     entry = pickle.load(f) | ||||
|                 else: | ||||
|                     entry = pickle.load(f, encoding='latin1') | ||||
|                 self.data.append(entry['data']) | ||||
|                 self.targets.extend(entry['labels']) | ||||
|         self.data = np.vstack(self.data).reshape(-1, 3, 16, 16) | ||||
|         self.data = self.data.transpose((0, 2, 3, 1))  # convert to HWC | ||||
|         if use_num_of_class_only is not None: | ||||
|             assert isinstance(use_num_of_class_only, | ||||
|                               int) and use_num_of_class_only > 0 and use_num_of_class_only < 1000, 'invalid use_num_of_class_only : {:}'.format( | ||||
|                 use_num_of_class_only) | ||||
|             new_data, new_targets = [], [] | ||||
|             for I, L in zip(self.data, self.targets): | ||||
|                 if 1 <= L <= use_num_of_class_only: | ||||
|                     new_data.append(I) | ||||
|                     new_targets.append(L) | ||||
|             self.data = new_data | ||||
|             self.targets = new_targets | ||||
|         #    self.mean.append(entry['mean']) | ||||
|         # self.mean = np.vstack(self.mean).reshape(-1, 3, 16, 16) | ||||
|         # self.mean = np.mean(np.mean(np.mean(self.mean, axis=0), axis=1), axis=1) | ||||
|         # print ('Mean : {:}'.format(self.mean)) | ||||
|         # temp      = self.data - np.reshape(self.mean, (1, 1, 1, 3)) | ||||
|         # std_data  = np.std(temp, axis=0) | ||||
|         # std_data  = np.mean(np.mean(std_data, axis=0), axis=0) | ||||
|         # print ('Std  : {:}'.format(std_data)) | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         img, target = self.data[index], self.targets[index] - 1 | ||||
|  | ||||
|         img = Image.fromarray(img) | ||||
|  | ||||
|         if self.transform is not None: | ||||
|             img = self.transform(img) | ||||
|  | ||||
|         return img, target | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.data) | ||||
|  | ||||
|     def _check_integrity(self): | ||||
|         root = self.root | ||||
|         for fentry in (self.train_list + self.valid_list): | ||||
|             filename, md5 = fentry[0], fentry[1] | ||||
|             fpath = os.path.join(root, filename) | ||||
|             if not check_integrity(fpath, md5): | ||||
|                 return False | ||||
|         return True | ||||
|  | ||||
|  | ||||
| # | ||||
| if __name__ == '__main__': | ||||
|     train = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', True, None) | ||||
|     valid = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', False, None) | ||||
|  | ||||
|     print(len(train)) | ||||
|     print(len(valid)) | ||||
|     image, label = train[111] | ||||
|     trainX = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', True, None, 200) | ||||
|     validX = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', False, None, 200) | ||||
|     print(len(trainX)) | ||||
|     print(len(validX)) | ||||
|     # import pdb; pdb.set_trace() | ||||
							
								
								
									
										19
									
								
								correlation/foresight/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								correlation/foresight/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,19 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| from os.path import dirname, basename, isfile, join | ||||
| import glob | ||||
| modules = glob.glob(join(dirname(__file__), "*.py")) | ||||
| __all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')] | ||||
							
								
								
									
										251
									
								
								correlation/foresight/models/nasbench1.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										251
									
								
								correlation/foresight/models/nasbench1.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,251 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| """Builds the Pytorch computational graph. | ||||
| Tensors flowing into a single vertex are added together for all vertices | ||||
| except the output, which is concatenated instead. Tensors flowing out of input | ||||
| are always added. | ||||
| If interior edge channels don't match, drop the extra channels (channels are | ||||
| guaranteed non-decreasing). Tensors flowing out of the input as always | ||||
| projected instead. | ||||
| """ | ||||
|  | ||||
| from __future__ import absolute_import | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import numpy as np | ||||
| import math | ||||
|  | ||||
| from .nasbench1_ops import * | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| class Network(nn.Module): | ||||
|     def __init__(self, spec, stem_out, num_stacks, num_mods, num_classes, bn=True): | ||||
|         super(Network, self).__init__() | ||||
|  | ||||
|         self.spec=spec | ||||
|         self.stem_out=stem_out  | ||||
|         self.num_stacks=num_stacks  | ||||
|         self.num_mods=num_mods | ||||
|         self.num_classes=num_classes | ||||
|  | ||||
|         self.layers = nn.ModuleList([]) | ||||
|  | ||||
|         in_channels = 3 | ||||
|         out_channels = stem_out | ||||
|  | ||||
|         # initial stem convolution | ||||
|         stem_conv = ConvBnRelu(in_channels, out_channels, 3, 1, 1, bn=bn) | ||||
|         self.layers.append(stem_conv) | ||||
|  | ||||
|         in_channels = out_channels | ||||
|         for stack_num in range(num_stacks): | ||||
|             if stack_num > 0: | ||||
|                 downsample = nn.MaxPool2d(kernel_size=2, stride=2) | ||||
|                 self.layers.append(downsample) | ||||
|  | ||||
|                 out_channels *= 2 | ||||
|  | ||||
|             for _ in range(num_mods): | ||||
|                 cell = Cell(spec, in_channels, out_channels, bn=bn) | ||||
|                 self.layers.append(cell) | ||||
|                 in_channels = out_channels | ||||
|  | ||||
|         self.classifier = nn.Linear(out_channels, num_classes) | ||||
|  | ||||
|         self._initialize_weights() | ||||
|  | ||||
|     def forward(self, x): | ||||
|         for _, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         out = torch.mean(x, (2, 3)) | ||||
|         out = self.classifier(out) | ||||
|  | ||||
|         return out | ||||
|      | ||||
|     def get_prunable_copy(self, bn=False): | ||||
|  | ||||
|         model_new = Network(self.spec, self.stem_out, self.num_stacks, self.num_mods, self.num_classes, bn=bn) | ||||
|          | ||||
|         #TODO this is quite brittle and doesn't work with nn.Sequential when bn is different | ||||
|         # it is only required to maintain initialization -- maybe init after get_punable_copy? | ||||
|         model_new.load_state_dict(self.state_dict(), strict=False) | ||||
|         model_new.train() | ||||
|  | ||||
|         return model_new | ||||
|  | ||||
|     def _initialize_weights(self): | ||||
|         for m in self.modules(): | ||||
|             if isinstance(m, nn.Conv2d): | ||||
|                 n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||||
|                 m.weight.data.normal_(0, math.sqrt(2.0 / n)) | ||||
|                 if m.bias is not None: | ||||
|                     m.bias.data.zero_() | ||||
|             elif isinstance(m, nn.BatchNorm2d): | ||||
|                 m.weight.data.fill_(1) | ||||
|                 m.bias.data.zero_() | ||||
|             elif isinstance(m, nn.Linear): | ||||
|                 n = m.weight.size(1) | ||||
|                 m.weight.data.normal_(0, 0.01) | ||||
|                 m.bias.data.zero_() | ||||
|  | ||||
| class Cell(nn.Module): | ||||
|     """ | ||||
|     Builds the model using the adjacency matrix and op labels specified. Channels | ||||
|     controls the module output channel count but the interior channels are | ||||
|     determined via equally splitting the channel count whenever there is a | ||||
|     concatenation of Tensors. | ||||
|     """ | ||||
|     def __init__(self, spec, in_channels, out_channels, bn=True): | ||||
|         super(Cell, self).__init__() | ||||
|  | ||||
|         self.spec = spec | ||||
|         self.num_vertices = np.shape(self.spec.matrix)[0] | ||||
|  | ||||
|         # vertex_channels[i] = number of output channels of vertex i | ||||
|         self.vertex_channels = ComputeVertexChannels(in_channels, out_channels, self.spec.matrix) | ||||
|         #self.vertex_channels = [in_channels] + [out_channels] * (self.num_vertices - 1) | ||||
|  | ||||
|         # operation for each node | ||||
|         self.vertex_op = nn.ModuleList([None]) | ||||
|         for t in range(1, self.num_vertices-1): | ||||
|             op = OP_MAP[spec.ops[t]](self.vertex_channels[t], self.vertex_channels[t], bn=bn) | ||||
|             self.vertex_op.append(op) | ||||
|  | ||||
|         # operation for input on each vertex | ||||
|         self.input_op = nn.ModuleList([None]) | ||||
|         for t in range(1, self.num_vertices): | ||||
|             if self.spec.matrix[0, t]: | ||||
|                 self.input_op.append(Projection(in_channels, self.vertex_channels[t], bn=bn)) | ||||
|             else: | ||||
|                 self.input_op.append(None) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         tensors = [x] | ||||
|  | ||||
|         out_concat = [] | ||||
|         for t in range(1, self.num_vertices-1): | ||||
|             fan_in = [Truncate(tensors[src], self.vertex_channels[t]) for src in range(1, t) if self.spec.matrix[src, t]] | ||||
|  | ||||
|             if self.spec.matrix[0, t]: | ||||
|                 fan_in.append(self.input_op[t](x)) | ||||
|  | ||||
|             # perform operation on node | ||||
|             #vertex_input = torch.stack(fan_in, dim=0).sum(dim=0) | ||||
|             vertex_input = sum(fan_in) | ||||
|             #vertex_input = sum(fan_in) / len(fan_in) | ||||
|             vertex_output = self.vertex_op[t](vertex_input) | ||||
|  | ||||
|             tensors.append(vertex_output) | ||||
|             if self.spec.matrix[t, self.num_vertices-1]: | ||||
|                 out_concat.append(tensors[t]) | ||||
|  | ||||
|         if not out_concat: | ||||
|             assert self.spec.matrix[0, self.num_vertices-1] | ||||
|             outputs = self.input_op[self.num_vertices-1](tensors[0]) | ||||
|         else: | ||||
|             if len(out_concat) == 1: | ||||
|                 outputs = out_concat[0] | ||||
|             else: | ||||
|                 outputs = torch.cat(out_concat, 1) | ||||
|  | ||||
|             if self.spec.matrix[0, self.num_vertices-1]: | ||||
|                 outputs += self.input_op[self.num_vertices-1](tensors[0]) | ||||
|  | ||||
|             #if self.spec.matrix[0, self.num_vertices-1]: | ||||
|             #    out_concat.append(self.input_op[self.num_vertices-1](tensors[0])) | ||||
|             #outputs = sum(out_concat) / len(out_concat) | ||||
|  | ||||
|         return outputs | ||||
|  | ||||
| def Projection(in_channels, out_channels, bn=True): | ||||
|     """1x1 projection (as in ResNet) followed by batch normalization and ReLU.""" | ||||
|     return ConvBnRelu(in_channels, out_channels, 1, bn=bn) | ||||
|  | ||||
| def Truncate(inputs, channels): | ||||
|     """Slice the inputs to channels if necessary.""" | ||||
|     input_channels = inputs.size()[1] | ||||
|     if input_channels < channels: | ||||
|         raise ValueError('input channel < output channels for truncate') | ||||
|     elif input_channels == channels: | ||||
|         return inputs   # No truncation necessary | ||||
|     else: | ||||
|         # Truncation should only be necessary when channel division leads to | ||||
|         # vertices with +1 channels. The input vertex should always be projected to | ||||
|         # the minimum channel count. | ||||
|         assert input_channels - channels == 1 | ||||
|         return inputs[:, :channels, :, :] | ||||
|  | ||||
| def ComputeVertexChannels(in_channels, out_channels, matrix): | ||||
|     """Computes the number of channels at every vertex. | ||||
|     Given the input channels and output channels, this calculates the number of | ||||
|     channels at each interior vertex. Interior vertices have the same number of | ||||
|     channels as the max of the channels of the vertices it feeds into. The output | ||||
|     channels are divided amongst the vertices that are directly connected to it. | ||||
|     When the division is not even, some vertices may receive an extra channel to | ||||
|     compensate. | ||||
|     Returns: | ||||
|         list of channel counts, in order of the vertices. | ||||
|     """ | ||||
|     num_vertices = np.shape(matrix)[0] | ||||
|  | ||||
|     vertex_channels = [0] * num_vertices | ||||
|     vertex_channels[0] = in_channels | ||||
|     vertex_channels[num_vertices - 1] = out_channels | ||||
|  | ||||
|     if num_vertices == 2: | ||||
|         # Edge case where module only has input and output vertices | ||||
|         return vertex_channels | ||||
|  | ||||
|     # Compute the in-degree ignoring input, axis 0 is the src vertex and axis 1 is | ||||
|     # the dst vertex. Summing over 0 gives the in-degree count of each vertex. | ||||
|     in_degree = np.sum(matrix[1:], axis=0) | ||||
|     interior_channels = out_channels // in_degree[num_vertices - 1] | ||||
|     correction = out_channels % in_degree[num_vertices - 1]  # Remainder to add | ||||
|  | ||||
|     # Set channels of vertices that flow directly to output | ||||
|     for v in range(1, num_vertices - 1): | ||||
|       if matrix[v, num_vertices - 1]: | ||||
|           vertex_channels[v] = interior_channels | ||||
|           if correction: | ||||
|               vertex_channels[v] += 1 | ||||
|               correction -= 1 | ||||
|  | ||||
|     # Set channels for all other vertices to the max of the out edges, going | ||||
|     # backwards. (num_vertices - 2) index skipped because it only connects to | ||||
|     # output. | ||||
|     for v in range(num_vertices - 3, 0, -1): | ||||
|         if not matrix[v, num_vertices - 1]: | ||||
|             for dst in range(v + 1, num_vertices - 1): | ||||
|                 if matrix[v, dst]: | ||||
|                     vertex_channels[v] = max(vertex_channels[v], vertex_channels[dst]) | ||||
|         assert vertex_channels[v] > 0 | ||||
|  | ||||
|     # Sanity check, verify that channels never increase and final channels add up. | ||||
|     final_fan_in = 0 | ||||
|     for v in range(1, num_vertices - 1): | ||||
|         if matrix[v, num_vertices - 1]: | ||||
|             final_fan_in += vertex_channels[v] | ||||
|         for dst in range(v + 1, num_vertices - 1): | ||||
|             if matrix[v, dst]: | ||||
|                 assert vertex_channels[v] >= vertex_channels[dst] | ||||
|     assert final_fan_in == out_channels or num_vertices == 2 | ||||
|     # num_vertices == 2 means only input/output nodes, so 0 fan-in | ||||
|  | ||||
|     return vertex_channels | ||||
							
								
								
									
										83
									
								
								correlation/foresight/models/nasbench1_ops.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										83
									
								
								correlation/foresight/models/nasbench1_ops.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,83 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| """Base operations used by the modules in this search space.""" | ||||
|  | ||||
| from __future__ import absolute_import | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| class ConvBnRelu(nn.Module): | ||||
|     def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, bn=True): | ||||
|         super(ConvBnRelu, self).__init__() | ||||
|  | ||||
|         if bn: | ||||
|             self.conv_bn_relu = nn.Sequential( | ||||
|                 nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False), | ||||
|                 nn.BatchNorm2d(out_channels), | ||||
|                 nn.ReLU(inplace=False) | ||||
|             ) | ||||
|         else: | ||||
|             self.conv_bn_relu = nn.Sequential( | ||||
|                 nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False), | ||||
|                 nn.ReLU(inplace=False) | ||||
|             ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.conv_bn_relu(x) | ||||
|  | ||||
| class Conv3x3BnRelu(nn.Module): | ||||
|     """3x3 convolution with batch norm and ReLU activation.""" | ||||
|     def __init__(self, in_channels, out_channels, bn=True): | ||||
|         super(Conv3x3BnRelu, self).__init__() | ||||
|  | ||||
|         self.conv3x3 = ConvBnRelu(in_channels, out_channels, 3, 1, 1, bn=bn) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.conv3x3(x) | ||||
|         return x | ||||
|  | ||||
| class Conv1x1BnRelu(nn.Module): | ||||
|     """1x1 convolution with batch norm and ReLU activation.""" | ||||
|     def __init__(self, in_channels, out_channels, bn=True): | ||||
|         super(Conv1x1BnRelu, self).__init__() | ||||
|  | ||||
|         self.conv1x1 = ConvBnRelu(in_channels, out_channels, 1, 1, 0, bn=bn) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.conv1x1(x) | ||||
|         return x | ||||
|  | ||||
| class MaxPool3x3(nn.Module): | ||||
|     """3x3 max pool with no subsampling.""" | ||||
|     def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bn=None): | ||||
|         super(MaxPool3x3, self).__init__() | ||||
|  | ||||
|         self.maxpool = nn.MaxPool2d(kernel_size, stride, padding) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.maxpool(x) | ||||
|         return x | ||||
|  | ||||
| # Commas should not be used in op names | ||||
| OP_MAP = { | ||||
|     'conv3x3-bn-relu': Conv3x3BnRelu, | ||||
|     'conv1x1-bn-relu': Conv1x1BnRelu, | ||||
|     'maxpool3x3': MaxPool3x3 | ||||
| } | ||||
							
								
								
									
										295
									
								
								correlation/foresight/models/nasbench1_spec.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										295
									
								
								correlation/foresight/models/nasbench1_spec.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,295 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| """Model specification for module connectivity individuals. | ||||
| This module handles pruning the unused parts of the computation graph but should | ||||
| avoid creating any TensorFlow models (this is done inside model_builder.py). | ||||
| """ | ||||
|  | ||||
| from __future__ import absolute_import | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import copy | ||||
| import hashlib | ||||
| import itertools | ||||
| import numpy as np | ||||
|  | ||||
|  | ||||
| # Graphviz is optional and only required for visualization. | ||||
| try: | ||||
|   import graphviz   # pylint: disable=g-import-not-at-top | ||||
| except ImportError: | ||||
|   pass | ||||
|  | ||||
| def _ToModelSpec(mat, ops): | ||||
|     return ModelSpec(mat, ops) | ||||
|  | ||||
| def gen_is_edge_fn(bits): | ||||
|   """Generate a boolean function for the edge connectivity. | ||||
|   Given a bitstring FEDCBA and a 4x4 matrix, the generated matrix is | ||||
|     [[0, A, B, D], | ||||
|      [0, 0, C, E], | ||||
|      [0, 0, 0, F], | ||||
|      [0, 0, 0, 0]] | ||||
|   Note that this function is agnostic to the actual matrix dimension due to | ||||
|   order in which elements are filled out (column-major, starting from least | ||||
|   significant bit). For example, the same FEDCBA bitstring (0-padded) on a 5x5 | ||||
|   matrix is | ||||
|     [[0, A, B, D, 0], | ||||
|      [0, 0, C, E, 0], | ||||
|      [0, 0, 0, F, 0], | ||||
|      [0, 0, 0, 0, 0], | ||||
|      [0, 0, 0, 0, 0]] | ||||
|   Args: | ||||
|     bits: integer which will be interpreted as a bit mask. | ||||
|   Returns: | ||||
|     vectorized function that returns True when an edge is present. | ||||
|   """ | ||||
|   def is_edge(x, y): | ||||
|     """Is there an edge from x to y (0-indexed)?""" | ||||
|     if x >= y: | ||||
|       return 0 | ||||
|     # Map x, y to index into bit string | ||||
|     index = x + (y * (y - 1) // 2) | ||||
|     return (bits >> index) % 2 == 1 | ||||
|  | ||||
|   return np.vectorize(is_edge) | ||||
|  | ||||
|  | ||||
| def is_full_dag(matrix): | ||||
|   """Full DAG == all vertices on a path from vert 0 to (V-1). | ||||
|   i.e. no disconnected or "hanging" vertices. | ||||
|   It is sufficient to check for: | ||||
|     1) no rows of 0 except for row V-1 (only output vertex has no out-edges) | ||||
|     2) no cols of 0 except for col 0 (only input vertex has no in-edges) | ||||
|   Args: | ||||
|     matrix: V x V upper-triangular adjacency matrix | ||||
|   Returns: | ||||
|     True if the there are no dangling vertices. | ||||
|   """ | ||||
|   shape = np.shape(matrix) | ||||
|  | ||||
|   rows = matrix[:shape[0]-1, :] == 0 | ||||
|   rows = np.all(rows, axis=1)     # Any row with all 0 will be True | ||||
|   rows_bad = np.any(rows) | ||||
|  | ||||
|   cols = matrix[:, 1:] == 0 | ||||
|   cols = np.all(cols, axis=0)     # Any col with all 0 will be True | ||||
|   cols_bad = np.any(cols) | ||||
|  | ||||
|   return (not rows_bad) and (not cols_bad) | ||||
|  | ||||
|  | ||||
| def num_edges(matrix): | ||||
|   """Computes number of edges in adjacency matrix.""" | ||||
|   return np.sum(matrix) | ||||
|  | ||||
|  | ||||
| def hash_module(matrix, labeling): | ||||
|   """Computes a graph-invariance MD5 hash of the matrix and label pair. | ||||
|   Args: | ||||
|     matrix: np.ndarray square upper-triangular adjacency matrix. | ||||
|     labeling: list of int labels of length equal to both dimensions of | ||||
|       matrix. | ||||
|   Returns: | ||||
|     MD5 hash of the matrix and labeling. | ||||
|   """ | ||||
|   vertices = np.shape(matrix)[0] | ||||
|   in_edges = np.sum(matrix, axis=0).tolist() | ||||
|   out_edges = np.sum(matrix, axis=1).tolist() | ||||
|  | ||||
|   assert len(in_edges) == len(out_edges) == len(labeling) | ||||
|   hashes = list(zip(out_edges, in_edges, labeling)) | ||||
|   hashes = [hashlib.md5(str(h).encode('utf-8')).hexdigest() for h in hashes] | ||||
|   # Computing this up to the diameter is probably sufficient but since the | ||||
|   # operation is fast, it is okay to repeat more times. | ||||
|   for _ in range(vertices): | ||||
|     new_hashes = [] | ||||
|     for v in range(vertices): | ||||
|       in_neighbors = [hashes[w] for w in range(vertices) if matrix[w, v]] | ||||
|       out_neighbors = [hashes[w] for w in range(vertices) if matrix[v, w]] | ||||
|       new_hashes.append(hashlib.md5( | ||||
|           (''.join(sorted(in_neighbors)) + '|' + | ||||
|            ''.join(sorted(out_neighbors)) + '|' + | ||||
|            hashes[v]).encode('utf-8')).hexdigest()) | ||||
|     hashes = new_hashes | ||||
|   fingerprint = hashlib.md5(str(sorted(hashes)).encode('utf-8')).hexdigest() | ||||
|  | ||||
|   return fingerprint | ||||
|  | ||||
|  | ||||
| def permute_graph(graph, label, permutation): | ||||
|   """Permutes the graph and labels based on permutation. | ||||
|   Args: | ||||
|     graph: np.ndarray adjacency matrix. | ||||
|     label: list of labels of same length as graph dimensions. | ||||
|     permutation: a permutation list of ints of same length as graph dimensions. | ||||
|   Returns: | ||||
|     np.ndarray where vertex permutation[v] is vertex v from the original graph | ||||
|   """ | ||||
|   # vertex permutation[v] in new graph is vertex v in the old graph | ||||
|   forward_perm = zip(permutation, list(range(len(permutation)))) | ||||
|   inverse_perm = [x[1] for x in sorted(forward_perm)] | ||||
|   edge_fn = lambda x, y: graph[inverse_perm[x], inverse_perm[y]] == 1 | ||||
|   new_matrix = np.fromfunction(np.vectorize(edge_fn), | ||||
|                                (len(label), len(label)), | ||||
|                                dtype=np.int8) | ||||
|   new_label = [label[inverse_perm[i]] for i in range(len(label))] | ||||
|   return new_matrix, new_label | ||||
|  | ||||
|  | ||||
| def is_isomorphic(graph1, graph2): | ||||
|   """Exhaustively checks if 2 graphs are isomorphic.""" | ||||
|   matrix1, label1 = np.array(graph1[0]), graph1[1] | ||||
|   matrix2, label2 = np.array(graph2[0]), graph2[1] | ||||
|   assert np.shape(matrix1) == np.shape(matrix2) | ||||
|   assert len(label1) == len(label2) | ||||
|  | ||||
|   vertices = np.shape(matrix1)[0] | ||||
|   # Note: input and output in our constrained graphs always map to themselves | ||||
|   # but this script does not enforce that. | ||||
|   for perm in itertools.permutations(range(0, vertices)): | ||||
|     pmatrix1, plabel1 = permute_graph(matrix1, label1, perm) | ||||
|     if np.array_equal(pmatrix1, matrix2) and plabel1 == label2: | ||||
|       return True | ||||
|  | ||||
|   return False | ||||
|  | ||||
| class ModelSpec(object): | ||||
|   """Model specification given adjacency matrix and labeling.""" | ||||
|  | ||||
|   def __init__(self, matrix, ops, data_format='channels_last'): | ||||
|     """Initialize the module spec. | ||||
|     Args: | ||||
|       matrix: ndarray or nested list with shape [V, V] for the adjacency matrix. | ||||
|       ops: V-length list of labels for the base ops used. The first and last | ||||
|         elements are ignored because they are the input and output vertices | ||||
|         which have no operations. The elements are retained to keep consistent | ||||
|         indexing. | ||||
|       data_format: channels_last or channels_first. | ||||
|     Raises: | ||||
|       ValueError: invalid matrix or ops | ||||
|     """ | ||||
|     if not isinstance(matrix, np.ndarray): | ||||
|       matrix = np.array(matrix) | ||||
|     shape = np.shape(matrix) | ||||
|     if len(shape) != 2 or shape[0] != shape[1]: | ||||
|       raise ValueError('matrix must be square') | ||||
|     if shape[0] != len(ops): | ||||
|       raise ValueError('length of ops must match matrix dimensions') | ||||
|     if not is_upper_triangular(matrix): | ||||
|       raise ValueError('matrix must be upper triangular') | ||||
|  | ||||
|     # Both the original and pruned matrices are deep copies of the matrix and | ||||
|     # ops so any changes to those after initialization are not recognized by the | ||||
|     # spec. | ||||
|     self.original_matrix = copy.deepcopy(matrix) | ||||
|     # print(self.original_matrix) | ||||
|     self.original_ops = copy.deepcopy(ops) | ||||
|  | ||||
|     self.matrix = copy.deepcopy(matrix) | ||||
|     self.ops = copy.deepcopy(ops) | ||||
|     self.valid_spec = True | ||||
|     self._prune() | ||||
|  | ||||
|     self.data_format = data_format | ||||
|  | ||||
|   def _prune(self): | ||||
|     """Prune the extraneous parts of the graph. | ||||
|     General procedure: | ||||
|       1) Remove parts of graph not connected to input. | ||||
|       2) Remove parts of graph not connected to output. | ||||
|       3) Reorder the vertices so that they are consecutive after steps 1 and 2. | ||||
|     These 3 steps can be combined by deleting the rows and columns of the | ||||
|     vertices that are not reachable from both the input and output (in reverse). | ||||
|     """ | ||||
|     num_vertices = np.shape(self.original_matrix)[0] | ||||
|  | ||||
|     # DFS forward from input | ||||
|     visited_from_input = set([0]) | ||||
|     frontier = [0] | ||||
|     while frontier: | ||||
|       top = frontier.pop() | ||||
|       for v in range(top + 1, num_vertices): | ||||
|         if self.original_matrix[top, v] and v not in visited_from_input: | ||||
|           visited_from_input.add(v) | ||||
|           frontier.append(v) | ||||
|  | ||||
|     # DFS backward from output | ||||
|     visited_from_output = set([num_vertices - 1]) | ||||
|     frontier = [num_vertices - 1] | ||||
|     while frontier: | ||||
|       top = frontier.pop() | ||||
|       for v in range(0, top): | ||||
|         if self.original_matrix[v, top] and v not in visited_from_output: | ||||
|           visited_from_output.add(v) | ||||
|           frontier.append(v) | ||||
|  | ||||
|     # Any vertex that isn't connected to both input and output is extraneous to | ||||
|     # the computation graph. | ||||
|     extraneous = set(range(num_vertices)).difference( | ||||
|         visited_from_input.intersection(visited_from_output)) | ||||
|  | ||||
|     # If the non-extraneous graph is less than 2 vertices, the input is not | ||||
|     # connected to the output and the spec is invalid. | ||||
|     if len(extraneous) > num_vertices - 2: | ||||
|       self.matrix = None | ||||
|       self.ops = None | ||||
|       self.valid_spec = False | ||||
|       return | ||||
|  | ||||
|     self.matrix = np.delete(self.matrix, list(extraneous), axis=0) | ||||
|     self.matrix = np.delete(self.matrix, list(extraneous), axis=1) | ||||
|     for index in sorted(extraneous, reverse=True): | ||||
|       del self.ops[index] | ||||
|  | ||||
|   def hash_spec(self, canonical_ops): | ||||
|     """Computes the isomorphism-invariant graph hash of this spec. | ||||
|     Args: | ||||
|       canonical_ops: list of operations in the canonical ordering which they | ||||
|         were assigned (i.e. the order provided in the config['available_ops']). | ||||
|     Returns: | ||||
|       MD5 hash of this spec which can be used to query the dataset. | ||||
|     """ | ||||
|     # Invert the operations back to integer label indices used in graph gen. | ||||
|     labeling = [-1] + [canonical_ops.index(op) for op in self.ops[1:-1]] + [-2] | ||||
|     return graph_util.hash_module(self.matrix, labeling) | ||||
|  | ||||
|   def visualize(self): | ||||
|     """Creates a dot graph. Can be visualized in colab directly.""" | ||||
|     num_vertices = np.shape(self.matrix)[0] | ||||
|     g = graphviz.Digraph() | ||||
|     g.node(str(0), 'input') | ||||
|     for v in range(1, num_vertices - 1): | ||||
|       g.node(str(v), self.ops[v]) | ||||
|     g.node(str(num_vertices - 1), 'output') | ||||
|  | ||||
|     for src in range(num_vertices - 1): | ||||
|       for dst in range(src + 1, num_vertices): | ||||
|         if self.matrix[src, dst]: | ||||
|           g.edge(str(src), str(dst)) | ||||
|  | ||||
|     return g | ||||
|  | ||||
|  | ||||
| def is_upper_triangular(matrix): | ||||
|   """True if matrix is 0 on diagonal and below.""" | ||||
|   for src in range(np.shape(matrix)[0]): | ||||
|     for dst in range(0, src + 1): | ||||
|       if matrix[src, dst] != 0: | ||||
|         return False | ||||
|  | ||||
|   return True | ||||
							
								
								
									
										140
									
								
								correlation/foresight/models/nasbench2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										140
									
								
								correlation/foresight/models/nasbench2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,140 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import os | ||||
| import argparse | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .nasbench2_ops import * | ||||
|  | ||||
|  | ||||
| def gen_searchcell_mask_from_arch_str(arch_str): | ||||
|     nodes = arch_str.split('+')  | ||||
|     nodes = [node[1:-1].split('|') for node in nodes] | ||||
|     nodes = [[op_and_input.split('~')  for op_and_input in node] for node in nodes] | ||||
|  | ||||
|     keep_mask = [] | ||||
|     for curr_node_idx in range(len(nodes)): | ||||
|             for prev_node_idx in range(curr_node_idx+1):  | ||||
|                 _op = [edge[0] for edge in nodes[curr_node_idx] if int(edge[1]) == prev_node_idx] | ||||
|                 assert len(_op) == 1, 'The arch string does not follow the assumption of 1 connection between two nodes.' | ||||
|                 for _op_name in OPS.keys(): | ||||
|                     keep_mask.append(_op[0] == _op_name) | ||||
|     return keep_mask | ||||
|  | ||||
|  | ||||
| def get_model_from_arch_str(arch_str, num_classes, use_bn=True, init_channels=16): | ||||
|     keep_mask = gen_searchcell_mask_from_arch_str(arch_str) | ||||
|     net = NAS201Model(arch_str=arch_str, num_classes=num_classes, use_bn=use_bn, keep_mask=keep_mask, stem_ch=init_channels) | ||||
|     return net | ||||
|  | ||||
|  | ||||
| def get_super_model(num_classes, use_bn=True): | ||||
|     net = NAS201Model(arch_str=arch_str, num_classes=num_classes, use_bn=use_bn) | ||||
|     return net | ||||
|  | ||||
|  | ||||
| class NAS201Model(nn.Module): | ||||
|  | ||||
|     def __init__(self, arch_str, num_classes, use_bn=True, keep_mask=None, stem_ch=16): | ||||
|         super(NAS201Model, self).__init__() | ||||
|         self.arch_str=arch_str | ||||
|         self.num_classes=num_classes | ||||
|         self.use_bn= use_bn | ||||
|  | ||||
|         self.stem = stem(out_channels=stem_ch, use_bn=use_bn) | ||||
|         self.stack_cell1 = nn.Sequential(*[SearchCell(in_channels=stem_ch, out_channels=stem_ch, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)]) | ||||
|         self.reduction1 = reduction(in_channels=stem_ch, out_channels=stem_ch*2) | ||||
|         self.stack_cell2 = nn.Sequential(*[SearchCell(in_channels=stem_ch*2, out_channels=stem_ch*2, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)]) | ||||
|         self.reduction2 = reduction(in_channels=stem_ch*2, out_channels=stem_ch*4) | ||||
|         self.stack_cell3 = nn.Sequential(*[SearchCell(in_channels=stem_ch*4, out_channels=stem_ch*4, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)]) | ||||
|         # self.top = top(in_dims=stem_ch*4, num_classes=num_classes, use_bn=use_bn) | ||||
|         self.top = top(in_dims=stem_ch*4, use_bn=use_bn) | ||||
|         self.classifier = nn.Linear(stem_ch*4, num_classes) | ||||
|         self.pre_GAP = nn.Sequential(nn.BatchNorm2d(stem_ch * 4), nn.ReLU(inplace=True)) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.stem(x)         | ||||
|  | ||||
|         x = self.stack_cell1(x) | ||||
|         x = self.reduction1(x) | ||||
|  | ||||
|         x = self.stack_cell2(x) | ||||
|         x = self.reduction2(x) | ||||
|  | ||||
|         x = self.stack_cell3(x) | ||||
|  | ||||
|         x = self.top(x) | ||||
|         x = self.classifier(x) | ||||
|         return x | ||||
|  | ||||
|     def forward_pre_GAP(self, x): | ||||
|         x = self.stem(x) | ||||
|  | ||||
|         x = self.stack_cell1(x) | ||||
|         x = self.reduction1(x) | ||||
|  | ||||
|         x = self.stack_cell2(x) | ||||
|         x = self.reduction2(x) | ||||
|  | ||||
|         x = self.stack_cell3(x) | ||||
|         x = self.pre_GAP(x) | ||||
|         return x | ||||
|  | ||||
|  | ||||
|      | ||||
|     def get_prunable_copy(self, bn=False): | ||||
|         model_new = get_model_from_arch_str(self.arch_str, self.num_classes, use_bn=bn) | ||||
|  | ||||
|         #TODO this is quite brittle and doesn't work with nn.Sequential when bn is different | ||||
|         # it is only required to maintain initialization -- maybe init after get_punable_copy? | ||||
|         model_new.load_state_dict(self.state_dict(), strict=False) | ||||
|         model_new.train() | ||||
|  | ||||
|         return model_new | ||||
|      | ||||
|  | ||||
| def get_arch_str_from_model(net): | ||||
|     search_cell = net.stack_cell1[0].options | ||||
|     keep_mask = net.stack_cell1[0].keep_mask | ||||
|     num_nodes = net.stack_cell1[0].num_nodes | ||||
|  | ||||
|     nodes = [] | ||||
|     idx = 0 | ||||
|     for curr_node in range(num_nodes -1): | ||||
|         edges = [] | ||||
|         for prev_node in range(curr_node+1): # n-1 prev nodes | ||||
|             for _op_name in OPS.keys(): | ||||
|                 if keep_mask[idx]: | ||||
|                     edges.append(f'{_op_name}~{prev_node}') | ||||
|                 idx += 1 | ||||
|         node_str = '|'.join(edges) | ||||
|         node_str = f'|{node_str}|' | ||||
|         nodes.append(node_str)  | ||||
|     arch_str = '+'.join(nodes) | ||||
|     return arch_str | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     arch_str = '|nor_conv_3x3~0|+|none~0|none~1|+|avg_pool_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|' | ||||
|      | ||||
|     n = get_model_from_arch_str(arch_str=arch_str, num_classes=10) | ||||
|     print(n.stack_cell1[0]) | ||||
|      | ||||
|     arch_str2 = get_arch_str_from_model(n) | ||||
|     print(arch_str) | ||||
|     print(arch_str2) | ||||
|     print(f'Are the two arch strings same? {arch_str == arch_str2}') | ||||
							
								
								
									
										166
									
								
								correlation/foresight/models/nasbench2_ops.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										166
									
								
								correlation/foresight/models/nasbench2_ops.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,166 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import os | ||||
| import argparse | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| class ReLUConvBN(nn.Module): | ||||
|  | ||||
|     def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, affine, track_running_stats=True, use_bn=True, name='ReLUConvBN'): | ||||
|         super(ReLUConvBN, self).__init__() | ||||
|         self.name = name | ||||
|         if use_bn: | ||||
|             self.op = nn.Sequential( | ||||
|                 nn.ReLU(inplace=False), | ||||
|                 nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine), | ||||
|                 nn.BatchNorm2d(out_channels, affine=affine, track_running_stats=track_running_stats) | ||||
|                 ) | ||||
|         else: | ||||
|             self.op = nn.Sequential( | ||||
|                 nn.ReLU(inplace=False), | ||||
|                 nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine) | ||||
|                 ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.op(x) | ||||
|  | ||||
| class Identity(nn.Module): | ||||
|     def __init__(self, name='Identity'): | ||||
|         self.name = name | ||||
|         super(Identity, self).__init__() | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return x | ||||
|  | ||||
| class Zero(nn.Module): | ||||
|  | ||||
|   def __init__(self, stride, name='Zero'): | ||||
|     self.name = name | ||||
|     super(Zero, self).__init__() | ||||
|     self.stride = stride | ||||
|  | ||||
|   def forward(self, x): | ||||
|     if self.stride == 1: | ||||
|       return x.mul(0.) | ||||
|     return x[:,:,::self.stride,::self.stride].mul(0.) | ||||
|  | ||||
| class POOLING(nn.Module): | ||||
|     def __init__(self, kernel_size, stride, padding, name='POOLING'): | ||||
|         super(POOLING, self).__init__() | ||||
|         self.name = name | ||||
|         self.avgpool = nn.AvgPool2d(kernel_size=kernel_size, stride=1, padding=1, count_include_pad=False) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.avgpool(x) | ||||
|  | ||||
|  | ||||
| class reduction(nn.Module): | ||||
|     def __init__(self, in_channels, out_channels): | ||||
|         super(reduction, self).__init__() | ||||
|         self.residual = nn.Sequential( | ||||
|                             nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|                             nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, bias=False)) | ||||
|  | ||||
|         self.conv_a = ReLUConvBN(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1, dilation=1, affine=True, track_running_stats=True) | ||||
|         self.conv_b = ReLUConvBN(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, dilation=1, affine=True, track_running_stats=True) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         basicblock = self.conv_a(x) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|         residual = self.residual(x) | ||||
|         return residual + basicblock | ||||
|  | ||||
| class stem(nn.Module): | ||||
|     def __init__(self, out_channels, use_bn=True): | ||||
|         super(stem, self).__init__() | ||||
|         if use_bn: | ||||
|             self.net = nn.Sequential( | ||||
|                     nn.Conv2d(in_channels=3, out_channels=out_channels, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(out_channels)) | ||||
|         else: | ||||
|             self.net = nn.Sequential( | ||||
|                     nn.Conv2d(in_channels=3, out_channels=out_channels, kernel_size=3, padding=1, bias=False) | ||||
|             ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.net(x) | ||||
|  | ||||
| class top(nn.Module): | ||||
|     # def __init__(self, in_dims, num_classes, use_bn=True): | ||||
|     def __init__(self, in_dims, use_bn=True): | ||||
|         super(top, self).__init__() | ||||
|         if use_bn: | ||||
|             self.lastact = nn.Sequential(nn.BatchNorm2d(in_dims), nn.ReLU(inplace=True)) | ||||
|         else: | ||||
|             self.lastact = nn.ReLU(inplace=True) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         # self.classifier = nn.Linear(in_dims, num_classes) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.lastact(x) | ||||
|         x = self.global_pooling(x) | ||||
|         x = x.view(x.size(0), -1) | ||||
|         # logits = self.classifier(x) | ||||
|         # return logits | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class SearchCell(nn.Module): | ||||
|  | ||||
|     def __init__(self, in_channels, out_channels, stride, affine, track_running_stats, use_bn=True, num_nodes=4, keep_mask=None): | ||||
|         super(SearchCell, self).__init__() | ||||
|         self.num_nodes = num_nodes | ||||
|         self.options = nn.ModuleList() | ||||
|         for curr_node in range(self.num_nodes-1): | ||||
|             for prev_node in range(curr_node+1):  | ||||
|                 for _op_name in OPS.keys(): | ||||
|                     op = OPS[_op_name](in_channels, out_channels, stride, affine, track_running_stats, use_bn) | ||||
|                     self.options.append(op) | ||||
|  | ||||
|         if keep_mask is not None: | ||||
|             self.keep_mask = keep_mask | ||||
|         else: | ||||
|             self.keep_mask = [True]*len(self.options) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         outs = [x] | ||||
|  | ||||
|         idx = 0 | ||||
|         for curr_node in range(self.num_nodes-1): | ||||
|             edges_in = [] | ||||
|             for prev_node in range(curr_node+1): # n-1 prev nodes | ||||
|                 for op_idx in range(len(OPS.keys())): | ||||
|                     if self.keep_mask[idx]: | ||||
|                         edges_in.append(self.options[idx](outs[prev_node])) | ||||
|                     idx += 1 | ||||
|             node_output = sum(edges_in) | ||||
|             outs.append(node_output) | ||||
|          | ||||
|         return outs[-1] | ||||
|  | ||||
|  | ||||
|  | ||||
| OPS = { | ||||
|     'none' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: Zero(stride, name='none'), | ||||
|     'avg_pool_3x3' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: POOLING(3, 1, 1, name='avg_pool_3x3'), | ||||
|     'nor_conv_3x3' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: ReLUConvBN(in_channels, out_channels, 3, 1, 1, 1, affine, track_running_stats, use_bn, name='nor_conv_3x3'), | ||||
|     'nor_conv_1x1' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: ReLUConvBN(in_channels, out_channels, 1, 1, 0, 1, affine, track_running_stats, use_bn, name='nor_conv_1x1'), | ||||
|     'skip_connect' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: Identity(name='skip_connect'), | ||||
| } | ||||
|  | ||||
|  | ||||
							
								
								
									
										19
									
								
								correlation/foresight/pruners/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								correlation/foresight/pruners/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,19 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| from os.path import dirname, basename, isfile, join | ||||
| import glob | ||||
| modules = glob.glob(join(dirname(__file__), "*.py")) | ||||
| __all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')] | ||||
							
								
								
									
										69
									
								
								correlation/foresight/pruners/measures/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										69
									
								
								correlation/foresight/pruners/measures/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,69 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
|  | ||||
| available_measures = [] | ||||
| _measure_impls = {} | ||||
|  | ||||
|  | ||||
| def measure(name, bn=True, copy_net=True, force_clean=True, **impl_args): | ||||
|     def make_impl(func): | ||||
|         def measure_impl(net_orig, device, *args, **kwargs): | ||||
|             if copy_net: | ||||
|                 net = net_orig.get_prunable_copy(bn=bn).to(device) | ||||
|             else: | ||||
|                 net = net_orig | ||||
|             ret = func(net, *args, **kwargs, **impl_args) | ||||
|             if copy_net and force_clean: | ||||
|                 import gc | ||||
|                 import torch | ||||
|                 del net | ||||
|                 torch.cuda.empty_cache() | ||||
|                 gc.collect() | ||||
|             return ret | ||||
|  | ||||
|         global _measure_impls | ||||
|         if name in _measure_impls: | ||||
|             raise KeyError(f'Duplicated measure! {name}') | ||||
|         available_measures.append(name) | ||||
|         _measure_impls[name] = measure_impl | ||||
|         return func | ||||
|     return make_impl | ||||
|  | ||||
|  | ||||
| def calc_measure(name, net, device, *args, **kwargs): | ||||
|     return _measure_impls[name](net, device, *args, **kwargs) | ||||
|  | ||||
|  | ||||
| def load_all(): | ||||
|     # from . import grad_norm | ||||
|     # from . import snip | ||||
|     # from . import grasp | ||||
|     # from . import fisher | ||||
|     # from . import jacob_cov | ||||
|     # from . import plain | ||||
|     # from . import synflow | ||||
|     # from . import var | ||||
|     # from . import cor | ||||
|     # from . import norm | ||||
|     from . import meco | ||||
|     # from . import zico | ||||
|     # from . import gradsign | ||||
|     # from . import ntk | ||||
|     # from . import zen | ||||
|  | ||||
|  | ||||
| # TODO: should we do that by default? | ||||
| load_all() | ||||
							
								
								
									
										53
									
								
								correlation/foresight/pruners/measures/cor.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										53
									
								
								correlation/foresight/pruners/measures/cor.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,53 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| import time | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import numpy as np | ||||
| import torch | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def get_score(net, x, target, device, split_data): | ||||
|     result_list = [] | ||||
|     def forward_hook(module, data_input, data_output): | ||||
|         corr = np.mean(np.corrcoef(data_input[0].detach().cpu().numpy())) | ||||
|         result_list.append(corr) | ||||
|     net.classifier.register_forward_hook(forward_hook) | ||||
|  | ||||
|     N = x.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st = sp * N // split_data | ||||
|         en = (sp + 1) * N // split_data | ||||
|         y = net(x[st:en]) | ||||
|     cor = result_list[0].item() | ||||
|     result_list.clear() | ||||
|     return cor | ||||
|  | ||||
|  | ||||
|  | ||||
| @measure('cor', bn=True) | ||||
| def compute_norm(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|     try: | ||||
|         cor= get_score(net, inputs, targets, device, split_data=split_data) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         cor= np.nan | ||||
|  | ||||
|     return cor | ||||
							
								
								
									
										67
									
								
								correlation/foresight/pruners/measures/cova.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										67
									
								
								correlation/foresight/pruners/measures/cova.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,67 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| import copy | ||||
| import time | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import numpy as np | ||||
| from torch import nn | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def get_score(net, x, target, device, split_data): | ||||
|     result_list = [] | ||||
|     result_t = [] | ||||
|     def forward_hook(module, data_input, data_output): | ||||
|         s = time.time() | ||||
|         fea = data_output[0].detach().cpu().numpy() | ||||
|         fea = fea.reshape(fea.shape[0], -1) | ||||
|         result = 1 / np.var(np.corrcoef(fea)) | ||||
|         e = time.time() | ||||
|         t = e - s | ||||
|         result_list.append(result) | ||||
|         result_t.append(t) | ||||
|     for name, modules in net.named_modules(): | ||||
|         modules.register_forward_hook(forward_hook) | ||||
|  | ||||
|  | ||||
|  | ||||
|     N = x.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st = sp * N // split_data | ||||
|         en = (sp + 1) * N // split_data | ||||
|         y = net(x[st:en]) | ||||
|     results = np.array(result_list) | ||||
|     results = results[np.logical_not(np.isnan(results))] | ||||
|     v = np.sum(results) | ||||
|     t = sum(result_t) | ||||
|     result_list.clear() | ||||
|     result_t.clear() | ||||
|     return v, t | ||||
|  | ||||
|  | ||||
|  | ||||
| @measure('cova', bn=True) | ||||
| def compute_cova(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|     try: | ||||
|         cova, t = get_score(net, inputs, targets, device, split_data=split_data) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         cova, t = np.nan, None | ||||
|     return cova, t | ||||
							
								
								
									
										107
									
								
								correlation/foresight/pruners/measures/fisher.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										107
									
								
								correlation/foresight/pruners/measures/fisher.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,107 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| import types | ||||
|  | ||||
| from . import measure | ||||
| from ..p_utils import get_layer_metric_array, reshape_elements | ||||
|  | ||||
|  | ||||
| def fisher_forward_conv2d(self, x): | ||||
|     x = F.conv2d(x, self.weight, self.bias, self.stride, | ||||
|                     self.padding, self.dilation, self.groups) | ||||
|     #intercept and store the activations after passing through 'hooked' identity op | ||||
|     self.act = self.dummy(x) | ||||
|     return self.act | ||||
|  | ||||
| def fisher_forward_linear(self, x): | ||||
|     x = F.linear(x, self.weight, self.bias) | ||||
|     self.act = self.dummy(x) | ||||
|     return self.act | ||||
|  | ||||
| @measure('fisher', bn=True, mode='channel') | ||||
| def compute_fisher_per_weight(net, inputs, targets, loss_fn, mode, split_data=1): | ||||
|      | ||||
|     device = inputs.device | ||||
|  | ||||
|     if mode == 'param': | ||||
|         raise ValueError('Fisher pruning does not support parameter pruning.') | ||||
|  | ||||
|     net.train() | ||||
|     all_hooks = [] | ||||
|     for layer in net.modules(): | ||||
|         if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): | ||||
|             #variables/op needed for fisher computation | ||||
|             layer.fisher = None | ||||
|             layer.act = 0. | ||||
|             layer.dummy = nn.Identity() | ||||
|  | ||||
|             #replace forward method of conv/linear | ||||
|             if isinstance(layer, nn.Conv2d): | ||||
|                 layer.forward = types.MethodType(fisher_forward_conv2d, layer) | ||||
|             if isinstance(layer, nn.Linear): | ||||
|                 layer.forward = types.MethodType(fisher_forward_linear, layer) | ||||
|  | ||||
|             #function to call during backward pass (hooked on identity op at output of layer) | ||||
|             def hook_factory(layer): | ||||
|                 def hook(module, grad_input, grad_output): | ||||
|                     act = layer.act.detach() | ||||
|                     grad = grad_output[0].detach() | ||||
|                     if len(act.shape) > 2: | ||||
|                         g_nk = torch.sum((act * grad), list(range(2,len(act.shape)))) | ||||
|                     else: | ||||
|                         g_nk = act * grad | ||||
|                     del_k = g_nk.pow(2).mean(0).mul(0.5) | ||||
|                     if layer.fisher is None: | ||||
|                         layer.fisher = del_k | ||||
|                     else: | ||||
|                         layer.fisher += del_k | ||||
|                     del layer.act #without deleting this, a nasty memory leak occurs! related: https://discuss.pytorch.org/t/memory-leak-when-using-forward-hook-and-backward-hook-simultaneously/27555 | ||||
|                 return hook | ||||
|  | ||||
|             #register backward hook on identity fcn to compute fisher info | ||||
|             layer.dummy.register_backward_hook(hook_factory(layer)) | ||||
|  | ||||
|     N = inputs.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st=sp*N//split_data | ||||
|         en=(sp+1)*N//split_data | ||||
|  | ||||
|         net.zero_grad() | ||||
|         outputs = net(inputs[st:en]) | ||||
|         loss = loss_fn(outputs, targets[st:en]) | ||||
|         loss.backward() | ||||
|  | ||||
|     # retrieve fisher info | ||||
|     def fisher(layer): | ||||
|         if layer.fisher is not None: | ||||
|             return torch.abs(layer.fisher.detach()) | ||||
|         else: | ||||
|             return torch.zeros(layer.weight.shape[0]) #size=ch | ||||
|  | ||||
|     grads_abs_ch = get_layer_metric_array(net, fisher, mode) | ||||
|  | ||||
|     #broadcast channel value here to all parameters in that channel | ||||
|     #to be compatible with stuff downstream (which expects per-parameter metrics) | ||||
|     #TODO cleanup on the selectors/apply_prune_mask side (?) | ||||
|     shapes = get_layer_metric_array(net, lambda l : l.weight.shape[1:], mode) | ||||
|  | ||||
|     grads_abs = reshape_elements(grads_abs_ch, shapes, device) | ||||
|  | ||||
|     return grads_abs | ||||
							
								
								
									
										38
									
								
								correlation/foresight/pruners/measures/grad_norm.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								correlation/foresight/pruners/measures/grad_norm.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,38 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| import copy | ||||
|  | ||||
| from . import measure | ||||
| from ..p_utils import get_layer_metric_array | ||||
|  | ||||
| @measure('grad_norm', bn=True) | ||||
| def get_grad_norm_arr(net, inputs, targets, loss_fn, split_data=1, skip_grad=False): | ||||
|     net.zero_grad() | ||||
|     N = inputs.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st=sp*N//split_data | ||||
|         en=(sp+1)*N//split_data | ||||
|  | ||||
|         outputs = net.forward(inputs[st:en]) | ||||
|         loss = loss_fn(outputs, targets[st:en]) | ||||
|         loss.backward() | ||||
|  | ||||
|         grad_norm_arr = get_layer_metric_array(net, lambda l: l.weight.grad.norm() if l.weight.grad is not None else torch.zeros_like(l.weight), mode='param') | ||||
|          | ||||
|     return grad_norm_arr | ||||
							
								
								
									
										76
									
								
								correlation/foresight/pruners/measures/gradsign.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										76
									
								
								correlation/foresight/pruners/measures/gradsign.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,76 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch | ||||
| from torch import nn | ||||
| import numpy as np | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def get_flattened_metric(net, metric): | ||||
|     grad_list = [] | ||||
|     for layer in net.modules(): | ||||
|         if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): | ||||
|             grad_list.append(metric(layer).flatten()) | ||||
|     flattened_grad = np.concatenate(grad_list) | ||||
|  | ||||
|     return flattened_grad | ||||
|  | ||||
|  | ||||
| def get_grad_conflict(net, inputs, targets, loss_fn): | ||||
|     N = inputs.shape[0] | ||||
|     batch_grad = [] | ||||
|     for i in range(N): | ||||
|         net.zero_grad() | ||||
|         outputs = net.forward(inputs[[i]]) | ||||
|         loss = loss_fn(outputs, targets[[i]]) | ||||
|         loss.backward() | ||||
|         flattened_grad = get_flattened_metric(net, lambda | ||||
|             l: l.weight.grad.data.clone().cpu().numpy() if l.weight.grad is not None else torch.zeros_like( | ||||
|             l.weight).clone().cpu().numpy()) | ||||
|         batch_grad.append(flattened_grad) | ||||
|     batch_grad = np.stack(batch_grad) | ||||
|     direction_code = np.sign(batch_grad) | ||||
|     direction_code = abs(direction_code.sum(axis=0)) | ||||
|     score = np.nansum(direction_code) | ||||
|     return score | ||||
|  | ||||
|  | ||||
| def get_gradsign(input, target, net, device, loss_fn): | ||||
|     s = [] | ||||
|     net = net.to(device) | ||||
|     x, target = input, target | ||||
|     # x2 = torch.clone(x) | ||||
|     # x2 = x2.to(device) | ||||
|     x, target = x.to(device), target.to(device) | ||||
|     s.append(get_grad_conflict(net=net, inputs=x, targets=target, loss_fn=loss_fn)) | ||||
|     s = np.mean(s) | ||||
|     return s | ||||
|  | ||||
| @measure('gradsign', bn=True) | ||||
| def compute_gradsign(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|  | ||||
|     try: | ||||
|         gradsign = get_gradsign(inputs, targets, net, device, loss_fn) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         gradsign= np.nan | ||||
|  | ||||
|     return gradsign | ||||
							
								
								
									
										87
									
								
								correlation/foresight/pruners/measures/grasp.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										87
									
								
								correlation/foresight/pruners/measures/grasp.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,87 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| import torch.autograd as autograd | ||||
|  | ||||
| from . import measure | ||||
| from ..p_utils import get_layer_metric_array | ||||
|  | ||||
|  | ||||
| @measure('grasp', bn=True, mode='param') | ||||
| def compute_grasp_per_weight(net, inputs, targets, mode, loss_fn, T=1, num_iters=1, split_data=1): | ||||
|  | ||||
|     # get all applicable weights | ||||
|     weights = [] | ||||
|     for layer in net.modules(): | ||||
|         if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): | ||||
|             weights.append(layer.weight) | ||||
|             layer.weight.requires_grad_(True) # TODO isn't this already true? | ||||
|  | ||||
|     # NOTE original code had some input/target splitting into 2 | ||||
|     # I am guessing this was because of GPU mem limit | ||||
|     net.zero_grad() | ||||
|     N = inputs.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st=sp*N//split_data | ||||
|         en=(sp+1)*N//split_data | ||||
|  | ||||
|         #forward/grad pass #1 | ||||
|         grad_w = None | ||||
|         for _ in range(num_iters): | ||||
|             #TODO get new data, otherwise num_iters is useless! | ||||
|             outputs = net.forward(inputs[st:en])/T | ||||
|             loss = loss_fn(outputs, targets[st:en]) | ||||
|             grad_w_p = autograd.grad(loss, weights, allow_unused=True) | ||||
|             if grad_w is None: | ||||
|                 grad_w = list(grad_w_p) | ||||
|             else: | ||||
|                 for idx in range(len(grad_w)): | ||||
|                     grad_w[idx] += grad_w_p[idx] | ||||
|  | ||||
|      | ||||
|     for sp in range(split_data): | ||||
|         st=sp*N//split_data | ||||
|         en=(sp+1)*N//split_data | ||||
|  | ||||
|         # forward/grad pass #2 | ||||
|         outputs = net.forward(inputs[st:en])/T | ||||
|         loss = loss_fn(outputs, targets[st:en]) | ||||
|         grad_f = autograd.grad(loss, weights, create_graph=True, allow_unused=True) | ||||
|          | ||||
|         # accumulate gradients computed in previous step and call backwards | ||||
|         z, count = 0,0 | ||||
|         for layer in net.modules(): | ||||
|             if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): | ||||
|                 if grad_w[count] is not None: | ||||
|                     z += (grad_w[count].data * grad_f[count]).sum() | ||||
|                 count += 1 | ||||
|         z.backward() | ||||
|  | ||||
|     # compute final sensitivity metric and put in grads | ||||
|     def grasp(layer): | ||||
|         if layer.weight.grad is not None: | ||||
|             return -layer.weight.data * layer.weight.grad   # -theta_q Hg | ||||
|             #NOTE in the grasp code they take the *bottom* (1-p)% of values | ||||
|             #but we take the *top* (1-p)%, therefore we remove the -ve sign | ||||
|             #EDIT accuracy seems to be negatively correlated with this metric, so we add -ve sign here! | ||||
|         else: | ||||
|             return torch.zeros_like(layer.weight) | ||||
|      | ||||
|     grads = get_layer_metric_array(net, grasp, mode) | ||||
|  | ||||
|     return grads | ||||
							
								
								
									
										57
									
								
								correlation/foresight/pruners/measures/jacob_cov.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										57
									
								
								correlation/foresight/pruners/measures/jacob_cov.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,57 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch | ||||
| import numpy as np | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def get_batch_jacobian(net, x, target, device, split_data): | ||||
|     x.requires_grad_(True) | ||||
|  | ||||
|     N = x.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st=sp*N//split_data | ||||
|         en=(sp+1)*N//split_data | ||||
|         y = net(x[st:en]) | ||||
|         y.backward(torch.ones_like(y)) | ||||
|  | ||||
|     jacob = x.grad.detach() | ||||
|     x.requires_grad_(False) | ||||
|     return jacob, target.detach() | ||||
|  | ||||
| def eval_score(jacob, labels=None): | ||||
|     corrs = np.corrcoef(jacob) | ||||
|     v, _  = np.linalg.eig(corrs) | ||||
|     k = 1e-5 | ||||
|     return -np.sum(np.log(v + k) + 1./(v + k)) | ||||
|  | ||||
| @measure('jacob_cov', bn=True) | ||||
| def compute_jacob_cov(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|     jacobs, labels = get_batch_jacobian(net, inputs, targets, device, split_data=split_data) | ||||
|     jacobs = jacobs.reshape(jacobs.size(0), -1).cpu().numpy() | ||||
|  | ||||
|     try: | ||||
|         jc = eval_score(jacobs, labels) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         jc = np.nan | ||||
|  | ||||
|     return jc | ||||
							
								
								
									
										22
									
								
								correlation/foresight/pruners/measures/l2_norm.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										22
									
								
								correlation/foresight/pruners/measures/l2_norm.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,22 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| from . import measure | ||||
| from ..p_utils import get_layer_metric_array | ||||
|  | ||||
|  | ||||
| @measure('l2_norm', copy_net=False, mode='param') | ||||
| def get_l2_norm_array(net, inputs, targets, mode, split_data=1): | ||||
|     return get_layer_metric_array(net, lambda l: l.weight.norm(), mode=mode) | ||||
							
								
								
									
										63
									
								
								correlation/foresight/pruners/measures/mean.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										63
									
								
								correlation/foresight/pruners/measures/mean.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,63 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| import time | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import numpy as np | ||||
| import torch | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def get_score(net, x, target, device, split_data): | ||||
|     result_list = [] | ||||
|     def forward_hook(module, data_input, data_output): | ||||
|         s = time.time() | ||||
|         mean = torch.mean(data_input[0]) | ||||
|         e = time.time() | ||||
|         t = e - s | ||||
|         result_list.append(mean) | ||||
|         result_list.append(t) | ||||
|     net.classifier.register_forward_hook(forward_hook) | ||||
|  | ||||
|     N = x.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st = sp * N // split_data | ||||
|         en = (sp + 1) * N // split_data | ||||
|         # t1 = time.time() | ||||
|         y = net(x[st:en]) | ||||
|         # t2 = time.time() | ||||
|         # print('var:', t2-t1) | ||||
|     m = result_list[0].item() | ||||
|     t = result_list[1] | ||||
|     result_list.clear() | ||||
|     return m, t | ||||
|  | ||||
|  | ||||
|  | ||||
| @measure('mean', bn=True) | ||||
| def compute_mean(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|     # print('var:', features.shape) | ||||
|     try: | ||||
|         mean, t = get_score(net, inputs, targets, device, split_data=split_data) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         mean, t = np.nan, None | ||||
|     # print(jc) | ||||
|     # print(f'var time: {t} s') | ||||
|     return mean, t | ||||
							
								
								
									
										73
									
								
								correlation/foresight/pruners/measures/meco.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										73
									
								
								correlation/foresight/pruners/measures/meco.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,73 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| import copy | ||||
| import time | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import numpy as np | ||||
| import torch | ||||
| from torch import nn | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def get_score(net, x, target, device, split_data): | ||||
|     result_list = [] | ||||
|     x = torch.randn(size=(1, 3, 64, 64)).to(device) | ||||
|     net.to(device) | ||||
|     def forward_hook(module, data_input, data_output): | ||||
|  | ||||
|         fea = data_output[0].detach() | ||||
|         fea = fea.reshape(fea.shape[0], -1) | ||||
|         n = fea.shape[0] | ||||
|         corr = torch.corrcoef(fea) | ||||
|         corr[torch.isnan(corr)] = 0 | ||||
|         corr[torch.isinf(corr)] = 0 | ||||
|         values = torch.linalg.eig(corr)[0] | ||||
|         # result = np.real(np.min(values)) / np.real(np.max(values)) | ||||
|         result = torch.min(torch.real(values)) | ||||
|         result_list.append(result) | ||||
|  | ||||
|     for name, modules in net.named_modules(): | ||||
|         modules.register_forward_hook(forward_hook) | ||||
|  | ||||
|  | ||||
|  | ||||
|     N = x.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st = sp * N // split_data | ||||
|         en = (sp + 1) * N // split_data | ||||
|         y = net(x[st:en]) | ||||
|         # break | ||||
|     results = torch.tensor(result_list) | ||||
|     results = results[torch.logical_not(torch.isnan(results))] | ||||
|     v = torch.sum(results) | ||||
|     result_list.clear() | ||||
|     return v.item() | ||||
|  | ||||
|  | ||||
|  | ||||
| @measure('meco', bn=True) | ||||
| def compute_meco(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|  | ||||
|     try: | ||||
|         meco = get_score(net, inputs, targets, device, split_data=split_data) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         meco = np.nan, None | ||||
|     return meco | ||||
							
								
								
									
										55
									
								
								correlation/foresight/pruners/measures/norm.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										55
									
								
								correlation/foresight/pruners/measures/norm.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,55 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| import time | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import numpy as np | ||||
| import torch | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def get_score(net, x, target, device, split_data): | ||||
|     result_list = [] | ||||
|     def forward_hook(module, data_input, data_output): | ||||
|         norm = torch.norm(data_input[0]) | ||||
|         result_list.append(norm) | ||||
|     net.classifier.register_forward_hook(forward_hook) | ||||
|  | ||||
|     N = x.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st = sp * N // split_data | ||||
|         en = (sp + 1) * N // split_data | ||||
|         y = net(x[st:en]) | ||||
|     n = result_list[0].item() | ||||
|     result_list.clear() | ||||
|     return n | ||||
|  | ||||
|  | ||||
|  | ||||
| @measure('norm', bn=True) | ||||
| def compute_norm(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|     # print('var:', feature.shape) | ||||
|     try: | ||||
|         norm, t = get_score(net, inputs, targets, device, split_data=split_data) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         norm, t = np.nan, None | ||||
|     # print(jc) | ||||
|     # print(f'norm time: {t} s') | ||||
|     return norm, t | ||||
							
								
								
									
										94
									
								
								correlation/foresight/pruners/measures/ntk.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										94
									
								
								correlation/foresight/pruners/measures/ntk.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,94 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch | ||||
| import numpy as np | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def recal_bn(network, inputs, targets, recalbn, device): | ||||
|     for m in network.modules(): | ||||
|         if isinstance(m, torch.nn.BatchNorm2d): | ||||
|             m.running_mean.data.fill_(0) | ||||
|             m.running_var.data.fill_(0) | ||||
|             m.num_batches_tracked.data.zero_() | ||||
|             m.momentum = None | ||||
|     network.train() | ||||
|     with torch.no_grad(): | ||||
|         for i, (inputs, targets) in enumerate(zip(inputs, targets)): | ||||
|             if i >= recalbn: break | ||||
|             inputs = inputs.cuda(device=device, non_blocking=True) | ||||
|             _, _ = network(inputs) | ||||
|     return network | ||||
|  | ||||
|  | ||||
| def get_ntk_n(inputs, targets, network, device, recalbn=0, train_mode=False, num_batch=1): | ||||
|     device = device | ||||
|     # if recalbn > 0: | ||||
|     #     network = recal_bn(network, xloader, recalbn, device) | ||||
|     #     if network_2 is not None: | ||||
|     #         network_2 = recal_bn(network_2, xloader, recalbn, device) | ||||
|     network.eval() | ||||
|     networks = [] | ||||
|     networks.append(network) | ||||
|     ntks = [] | ||||
|     # if train_mode: | ||||
|     #     networks.train() | ||||
|     # else: | ||||
|     #     networks.eval() | ||||
|     ###### | ||||
|     grads = [[] for _ in range(len(networks))] | ||||
|     for i in range(num_batch): | ||||
|         if num_batch > 0 and i >= num_batch: break | ||||
|         inputs = inputs.cuda(device=device, non_blocking=True) | ||||
|         for net_idx, network in enumerate(networks): | ||||
|             network.zero_grad() | ||||
|             # print(inputs.size()) | ||||
|             inputs_ = inputs.clone().cuda(device=device, non_blocking=True) | ||||
|             logit = network(inputs_) | ||||
|             if isinstance(logit, tuple): | ||||
|                 logit = logit[1]  # 201 networks: return features and logits | ||||
|             for _idx in range(len(inputs_)): | ||||
|                 logit[_idx:_idx + 1].backward(torch.ones_like(logit[_idx:_idx + 1]), retain_graph=True) | ||||
|                 grad = [] | ||||
|                 for name, W in network.named_parameters(): | ||||
|                     if 'weight' in name and W.grad is not None: | ||||
|                         grad.append(W.grad.view(-1).detach()) | ||||
|                 grads[net_idx].append(torch.cat(grad, -1)) | ||||
|                 network.zero_grad() | ||||
|                 torch.cuda.empty_cache() | ||||
|     ###### | ||||
|     grads = [torch.stack(_grads, 0) for _grads in grads] | ||||
|     ntks = [torch.einsum('nc,mc->nm', [_grads, _grads]) for _grads in grads] | ||||
|     for ntk in ntks: | ||||
|         eigenvalues, _ = torch.linalg.eigh(ntk)  # ascending | ||||
|         conds = np.nan_to_num((eigenvalues[-1] / eigenvalues[0]).item(), copy=True, nan=100000.0) | ||||
|     return conds | ||||
|  | ||||
| @measure('ntk', bn=True) | ||||
| def compute_ntk(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|  | ||||
|     try: | ||||
|         conds = get_ntk_n(inputs, targets, net, device) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         conds= np.nan | ||||
|  | ||||
|     return conds | ||||
							
								
								
									
										16
									
								
								correlation/foresight/pruners/measures/param_count.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								correlation/foresight/pruners/measures/param_count.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,16 @@ | ||||
| import time | ||||
| import torch | ||||
|  | ||||
| from . import measure | ||||
| from ..p_utils import get_layer_metric_array | ||||
|  | ||||
|  | ||||
|  | ||||
| @measure('param_count', copy_net=False, mode='param') | ||||
| def get_param_count_array(net, inputs, targets, mode, loss_fn, split_data=1): | ||||
|     s = time.time() | ||||
|     count = get_layer_metric_array(net, lambda l: torch.tensor(sum(p.numel() for p in l.parameters() if p.requires_grad)), mode=mode) | ||||
|     e = time.time() | ||||
|     t = e - s | ||||
|     # print(f'param_count time: {t} s') | ||||
|     return count, t | ||||
							
								
								
									
										71
									
								
								correlation/foresight/pruners/measures/pearson.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								correlation/foresight/pruners/measures/pearson.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,71 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| import copy | ||||
| import time | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import numpy as np | ||||
| from torch import nn | ||||
| # import pandas as pd | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def get_score(net, x, target, device, split_data): | ||||
|     result_list = [] | ||||
|     result_t = [] | ||||
|     def forward_hook(module, data_input, data_output): | ||||
|         s = time.time() | ||||
|         fea = data_output[0].detach().cpu().numpy() | ||||
|         fea = fea.reshape(fea.shape[0], -1) | ||||
|         # result = 1 / np.var(np.corrcoef(fea)) | ||||
|         result = np.var(np.corrcoef(fea)) | ||||
|         e = time.time() | ||||
|         t = e - s | ||||
|         result_list.append(result) | ||||
|         result_t.append(t) | ||||
|  | ||||
|     for name, modules in net.named_modules(): | ||||
|         modules.register_forward_hook(forward_hook) | ||||
|  | ||||
|  | ||||
|  | ||||
|     N = x.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st = sp * N // split_data | ||||
|         en = (sp + 1) * N // split_data | ||||
|         y = net(x[st:en]) | ||||
|         # print(y) | ||||
|     results = np.array(result_list) | ||||
|     results = results[np.logical_not(np.isnan(results))] | ||||
|     v = np.sum(results) | ||||
|     t = sum(result_t) | ||||
|     result_list.clear() | ||||
|     result_t.clear() | ||||
|     return v, t | ||||
|  | ||||
|  | ||||
|  | ||||
| @measure('pearson', bn=True) | ||||
| def compute_pearson(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|     try: | ||||
|         pearson, t = get_score(net, inputs, targets, device, split_data=split_data) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         pearson, t = np.nan, None | ||||
|     return pearson, t | ||||
							
								
								
									
										44
									
								
								correlation/foresight/pruners/measures/plain.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										44
									
								
								correlation/foresight/pruners/measures/plain.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,44 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from . import measure | ||||
| from ..p_utils import get_layer_metric_array | ||||
|  | ||||
|  | ||||
| @measure('plain', bn=True, mode='param') | ||||
| def compute_plain_per_weight(net, inputs, targets, mode, loss_fn, split_data=1): | ||||
|  | ||||
|     net.zero_grad() | ||||
|     N = inputs.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st=sp*N//split_data | ||||
|         en=(sp+1)*N//split_data | ||||
|  | ||||
|         outputs = net.forward(inputs[st:en]) | ||||
|         loss = loss_fn(outputs, targets[st:en]) | ||||
|         loss.backward() | ||||
|  | ||||
|     # select the gradients that we want to use for search/prune | ||||
|     def plain(layer): | ||||
|         if layer.weight.grad is not None: | ||||
|             return layer.weight.grad * layer.weight | ||||
|         else: | ||||
|             return torch.zeros_like(layer.weight) | ||||
|  | ||||
|     grads_abs = get_layer_metric_array(net, plain, mode) | ||||
|     return grads_abs | ||||
							
								
								
									
										69
									
								
								correlation/foresight/pruners/measures/snip.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										69
									
								
								correlation/foresight/pruners/measures/snip.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,69 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| import copy | ||||
| import types | ||||
|  | ||||
| from . import measure | ||||
| from ..p_utils import get_layer_metric_array | ||||
|  | ||||
|  | ||||
| def snip_forward_conv2d(self, x): | ||||
|         return F.conv2d(x, self.weight * self.weight_mask, self.bias, | ||||
|                         self.stride, self.padding, self.dilation, self.groups) | ||||
|  | ||||
| def snip_forward_linear(self, x): | ||||
|         return F.linear(x, self.weight * self.weight_mask, self.bias) | ||||
|  | ||||
| @measure('snip', bn=True, mode='param') | ||||
| def compute_snip_per_weight(net, inputs, targets, mode, loss_fn, split_data=1): | ||||
|     for layer in net.modules(): | ||||
|         if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): | ||||
|             layer.weight_mask = nn.Parameter(torch.ones_like(layer.weight)) | ||||
|             layer.weight.requires_grad = False | ||||
|  | ||||
|         # Override the forward methods: | ||||
|         if isinstance(layer, nn.Conv2d): | ||||
|             layer.forward = types.MethodType(snip_forward_conv2d, layer) | ||||
|  | ||||
|         if isinstance(layer, nn.Linear): | ||||
|             layer.forward = types.MethodType(snip_forward_linear, layer) | ||||
|  | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|     N = inputs.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st=sp*N//split_data | ||||
|         en=(sp+1)*N//split_data | ||||
|      | ||||
|         outputs = net.forward(inputs[st:en]) | ||||
|         loss = loss_fn(outputs, targets[st:en]) | ||||
|         loss.backward() | ||||
|  | ||||
|     # select the gradients that we want to use for search/prune | ||||
|     def snip(layer): | ||||
|         if layer.weight_mask.grad is not None: | ||||
|             return torch.abs(layer.weight_mask.grad) | ||||
|         else: | ||||
|             return torch.zeros_like(layer.weight) | ||||
|      | ||||
|     grads_abs = get_layer_metric_array(net, snip, mode) | ||||
|  | ||||
|     return grads_abs | ||||
							
								
								
									
										69
									
								
								correlation/foresight/pruners/measures/synflow.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										69
									
								
								correlation/foresight/pruners/measures/synflow.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,69 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch | ||||
|  | ||||
| from . import measure | ||||
| from ..p_utils import get_layer_metric_array | ||||
|  | ||||
|  | ||||
| @measure('synflow', bn=False, mode='param') | ||||
| @measure('synflow_bn', bn=True, mode='param') | ||||
| def compute_synflow_per_weight(net, inputs, targets, mode, split_data=1, loss_fn=None): | ||||
|  | ||||
|     device = inputs.device | ||||
|  | ||||
|     #convert params to their abs. Keep sign for converting it back. | ||||
|     @torch.no_grad() | ||||
|     def linearize(net): | ||||
|         signs = {} | ||||
|         for name, param in net.state_dict().items(): | ||||
|             signs[name] = torch.sign(param) | ||||
|             param.abs_() | ||||
|         return signs | ||||
|  | ||||
|     #convert to orig values | ||||
|     @torch.no_grad() | ||||
|     def nonlinearize(net, signs): | ||||
|         for name, param in net.state_dict().items(): | ||||
|             if 'weight_mask' not in name: | ||||
|                 param.mul_(signs[name]) | ||||
|  | ||||
|     # keep signs of all params | ||||
|     signs = linearize(net) | ||||
|      | ||||
|     # Compute gradients with input of 1s  | ||||
|     net.zero_grad() | ||||
|     net.double() | ||||
|     input_dim = list(inputs[0,:].shape) | ||||
|     inputs = torch.ones([1] + input_dim).double().to(device) | ||||
|     output = net.forward(inputs) | ||||
|     torch.sum(output).backward()  | ||||
|  | ||||
|     # select the gradients that we want to use for search/prune | ||||
|     def synflow(layer): | ||||
|         if layer.weight.grad is not None: | ||||
|             return torch.abs(layer.weight * layer.weight.grad) | ||||
|         else: | ||||
|             return torch.zeros_like(layer.weight) | ||||
|  | ||||
|     grads_abs = get_layer_metric_array(net, synflow, mode) | ||||
|  | ||||
|     # apply signs of all params | ||||
|     nonlinearize(net, signs) | ||||
|  | ||||
|     return grads_abs | ||||
|  | ||||
|  | ||||
							
								
								
									
										55
									
								
								correlation/foresight/pruners/measures/var.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										55
									
								
								correlation/foresight/pruners/measures/var.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,55 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| import time | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import numpy as np | ||||
| import torch | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def get_score(net, x, target, device, split_data): | ||||
|     result_list = [] | ||||
|     def forward_hook(module, data_input, data_output): | ||||
|         var = torch.var(data_input[0]) | ||||
|         result_list.append(var) | ||||
|     net.classifier.register_forward_hook(forward_hook) | ||||
|  | ||||
|     N = x.shape[0] | ||||
|     for sp in range(split_data): | ||||
|         st = sp * N // split_data | ||||
|         en = (sp + 1) * N // split_data | ||||
|         y = net(x[st:en]) | ||||
|     v = result_list[0].item() | ||||
|     result_list.clear() | ||||
|     return v | ||||
|  | ||||
|  | ||||
|  | ||||
| @measure('var', bn=True) | ||||
| def compute_var(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|     # print('var:', feature.shape) | ||||
|     try: | ||||
|         var= get_score(net, inputs, targets, device, split_data=split_data) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         var= np.nan | ||||
|     # print(jc) | ||||
|     # print(f'var time: {t} s') | ||||
|     return var | ||||
							
								
								
									
										110
									
								
								correlation/foresight/pruners/measures/zen.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										110
									
								
								correlation/foresight/pruners/measures/zen.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,110 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch | ||||
| from torch import nn | ||||
| import numpy as np | ||||
|  | ||||
| from . import measure | ||||
|  | ||||
|  | ||||
| def network_weight_gaussian_init(net: nn.Module): | ||||
|     with torch.no_grad(): | ||||
|         for n, m in net.named_modules(): | ||||
|             if isinstance(m, nn.Conv2d): | ||||
|                 nn.init.normal_(m.weight) | ||||
|                 if hasattr(m, 'bias') and m.bias is not None: | ||||
|                     nn.init.zeros_(m.bias) | ||||
|             elif isinstance(m, nn.BatchNorm2d): | ||||
|                 try: | ||||
|                     nn.init.ones_(m.weight) | ||||
|                     nn.init.zeros_(m.bias) | ||||
|                 except: | ||||
|                     pass | ||||
|             elif isinstance(m, nn.Linear): | ||||
|                 nn.init.normal_(m.weight) | ||||
|                 if hasattr(m, 'bias') and m.bias is not None: | ||||
|                     nn.init.zeros_(m.bias) | ||||
|             else: | ||||
|                 continue | ||||
|  | ||||
|     return net | ||||
|  | ||||
|  | ||||
| def get_zen(gpu, model, mixup_gamma=1e-2, resolution=32, batch_size=64, repeat=32, | ||||
|                       fp16=False): | ||||
|     info = {} | ||||
|     nas_score_list = [] | ||||
|     if gpu is not None: | ||||
|         device = torch.device(gpu) | ||||
|     else: | ||||
|         device = torch.device('cpu') | ||||
|  | ||||
|     if fp16: | ||||
|         dtype = torch.half | ||||
|     else: | ||||
|         dtype = torch.float32 | ||||
|  | ||||
|     with torch.no_grad(): | ||||
|         for repeat_count in range(repeat): | ||||
|             network_weight_gaussian_init(model) | ||||
|             input = torch.randn(size=[batch_size, 3, resolution, resolution], device=device, dtype=dtype) | ||||
|             input2 = torch.randn(size=[batch_size, 3, resolution, resolution], device=device, dtype=dtype) | ||||
|             mixup_input = input + mixup_gamma * input2 | ||||
|             output = model.forward_pre_GAP(input) | ||||
|             mixup_output = model.forward_pre_GAP(mixup_input) | ||||
|  | ||||
|             nas_score = torch.sum(torch.abs(output - mixup_output), dim=[1, 2, 3]) | ||||
|             nas_score = torch.mean(nas_score) | ||||
|  | ||||
|             # compute BN scaling | ||||
|             log_bn_scaling_factor = 0.0 | ||||
|             for m in model.modules(): | ||||
|                 if isinstance(m, nn.BatchNorm2d): | ||||
|                     try: | ||||
|                         bn_scaling_factor = torch.sqrt(torch.mean(m.running_var)) | ||||
|                         log_bn_scaling_factor += torch.log(bn_scaling_factor) | ||||
|                     except: | ||||
|                         pass | ||||
|                 pass | ||||
|             pass | ||||
|             nas_score = torch.log(nas_score) + log_bn_scaling_factor | ||||
|             nas_score_list.append(float(nas_score)) | ||||
|  | ||||
|     std_nas_score = np.std(nas_score_list) | ||||
|     avg_precision = 1.96 * std_nas_score / np.sqrt(len(nas_score_list)) | ||||
|     avg_nas_score = np.mean(nas_score_list) | ||||
|  | ||||
|     info = float(avg_nas_score) | ||||
|     return info | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| @measure('zen', bn=True) | ||||
| def compute_zen(net, inputs, targets, split_data=1, loss_fn=None): | ||||
|     device = inputs.device | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|  | ||||
|     try: | ||||
|         zen = get_zen(device,net) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         zen= np.nan | ||||
|  | ||||
|     return zen | ||||
							
								
								
									
										106
									
								
								correlation/foresight/pruners/measures/zico.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										106
									
								
								correlation/foresight/pruners/measures/zico.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,106 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| import time | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import numpy as np | ||||
| import torch | ||||
|  | ||||
| from . import measure | ||||
| from torch import nn | ||||
|  | ||||
| from ...dataset import get_cifar_dataloaders | ||||
|  | ||||
|  | ||||
| def getgrad(model: torch.nn.Module, grad_dict: dict, step_iter=0): | ||||
|     if step_iter == 0: | ||||
|         for name, mod in model.named_modules(): | ||||
|             if isinstance(mod, nn.Conv2d) or isinstance(mod, nn.Linear): | ||||
|                 # print(mod.weight.grad.data.size()) | ||||
|                 # print(mod.weight.data.size()) | ||||
|                 try: | ||||
|                     grad_dict[name] = [mod.weight.grad.data.cpu().reshape(-1).numpy()] | ||||
|                 except: | ||||
|                     continue | ||||
|     else: | ||||
|         for name, mod in model.named_modules(): | ||||
|             if isinstance(mod, nn.Conv2d) or isinstance(mod, nn.Linear): | ||||
|                 try: | ||||
|                     grad_dict[name].append(mod.weight.grad.data.cpu().reshape(-1).numpy()) | ||||
|                 except: | ||||
|                     continue | ||||
|     return grad_dict | ||||
|  | ||||
|  | ||||
| def caculate_zico(grad_dict): | ||||
|     allgrad_array = None | ||||
|     for i, modname in enumerate(grad_dict.keys()): | ||||
|         grad_dict[modname] = np.array(grad_dict[modname]) | ||||
|     nsr_mean_sum = 0 | ||||
|     nsr_mean_sum_abs = 0 | ||||
|     nsr_mean_avg = 0 | ||||
|     nsr_mean_avg_abs = 0 | ||||
|     for j, modname in enumerate(grad_dict.keys()): | ||||
|         nsr_std = np.std(grad_dict[modname], axis=0) | ||||
|         # print(grad_dict[modname].shape) | ||||
|         # print(grad_dict[modname].shape, nsr_std.shape) | ||||
|         nonzero_idx = np.nonzero(nsr_std)[0] | ||||
|         nsr_mean_abs = np.mean(np.abs(grad_dict[modname]), axis=0) | ||||
|         tmpsum = np.sum(nsr_mean_abs[nonzero_idx] / nsr_std[nonzero_idx]) | ||||
|         if tmpsum == 0: | ||||
|             pass | ||||
|         else: | ||||
|             nsr_mean_sum_abs += np.log(tmpsum) | ||||
|             nsr_mean_avg_abs += np.log(np.mean(nsr_mean_abs[nonzero_idx] / nsr_std[nonzero_idx])) | ||||
|     return nsr_mean_sum_abs | ||||
|  | ||||
|  | ||||
| def getzico(network, inputs, targets, loss_fn, split_data=2): | ||||
|     grad_dict = {} | ||||
|     network.train() | ||||
|     device = inputs.device | ||||
|     network.to(device) | ||||
|     N = inputs.shape[0] | ||||
|     split_data = 2 | ||||
|  | ||||
|     for sp in range(split_data): | ||||
|         st = sp * N // split_data | ||||
|         en = (sp + 1) * N // split_data | ||||
|         outputs = network.forward(inputs[st:en]) | ||||
|         loss = loss_fn(outputs, targets[st:en]) | ||||
|         loss.backward() | ||||
|         grad_dict = getgrad(network, grad_dict, sp) | ||||
|     # print(grad_dict) | ||||
|     res = caculate_zico(grad_dict) | ||||
|     return res | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| @measure('zico', bn=True) | ||||
| def compute_zico(net, inputs, targets, split_data=2, loss_fn=None): | ||||
|  | ||||
|     # Compute gradients (but don't apply them) | ||||
|     net.zero_grad() | ||||
|  | ||||
|     # print('var:', feature.shape) | ||||
|     try: | ||||
|         zico = getzico(net, inputs, targets, loss_fn, split_data=split_data) | ||||
|     except Exception as e: | ||||
|         print(e) | ||||
|         zico= np.nan | ||||
|     # print(jc) | ||||
|     # print(f'var time: {t} s') | ||||
|     return zico | ||||
							
								
								
									
										83
									
								
								correlation/foresight/pruners/p_utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										83
									
								
								correlation/foresight/pruners/p_utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,83 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from ..models import * | ||||
|  | ||||
| def get_some_data(train_dataloader, num_batches, device): | ||||
|     traindata = [] | ||||
|     dataloader_iter = iter(train_dataloader) | ||||
|     for _ in range(num_batches): | ||||
|         traindata.append(next(dataloader_iter)) | ||||
|     inputs  = torch.cat([a for a,_ in traindata]) | ||||
|     targets = torch.cat([b for _,b in traindata]) | ||||
|     inputs = inputs.to(device) | ||||
|     targets = targets.to(device) | ||||
|     return inputs, targets | ||||
|  | ||||
| def get_some_data_grasp(train_dataloader, num_classes, samples_per_class, device): | ||||
|     datas = [[] for _ in range(num_classes)] | ||||
|     labels = [[] for _ in range(num_classes)] | ||||
|     mark = dict() | ||||
|     dataloader_iter = iter(train_dataloader) | ||||
|     while True: | ||||
|         inputs, targets = next(dataloader_iter) | ||||
|         for idx in range(inputs.shape[0]): | ||||
|             x, y = inputs[idx:idx+1], targets[idx:idx+1] | ||||
|             category = y.item() | ||||
|             if len(datas[category]) == samples_per_class: | ||||
|                 mark[category] = True | ||||
|                 continue | ||||
|             datas[category].append(x) | ||||
|             labels[category].append(y) | ||||
|         if len(mark) == num_classes: | ||||
|             break | ||||
|  | ||||
|     x = torch.cat([torch.cat(_, 0) for _ in datas]).to(device)  | ||||
|     y = torch.cat([torch.cat(_) for _ in labels]).view(-1).to(device) | ||||
|     return x, y | ||||
|  | ||||
| def get_layer_metric_array(net, metric, mode):  | ||||
|     metric_array = [] | ||||
|  | ||||
|     for layer in net.modules(): | ||||
|         if mode=='channel' and hasattr(layer,'dont_ch_prune'): | ||||
|             continue | ||||
|         if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): | ||||
|             metric_array.append(metric(layer)) | ||||
|      | ||||
|     return metric_array | ||||
|  | ||||
| def reshape_elements(elements, shapes, device): | ||||
|     def broadcast_val(elements, shapes): | ||||
|         ret_grads = [] | ||||
|         for e,sh in zip(elements, shapes): | ||||
|             ret_grads.append(torch.stack([torch.Tensor(sh).fill_(v) for v in e], dim=0).to(device)) | ||||
|         return ret_grads | ||||
|     if type(elements[0]) == list: | ||||
|         outer = [] | ||||
|         for e,sh in zip(elements, shapes): | ||||
|             outer.append(broadcast_val(e,sh)) | ||||
|         return outer | ||||
|     else: | ||||
|         return broadcast_val(elements, shapes) | ||||
|  | ||||
| def count_parameters(model): | ||||
|     return sum(p.numel() for p in model.parameters() if p.requires_grad) | ||||
|  | ||||
							
								
								
									
										116
									
								
								correlation/foresight/pruners/predictive.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										116
									
								
								correlation/foresight/pruners/predictive.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,116 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from .p_utils import * | ||||
| from . import measures | ||||
|  | ||||
| import types | ||||
| import copy | ||||
|  | ||||
|  | ||||
| def no_op(self,x): | ||||
|     return x | ||||
|  | ||||
| def copynet(self, bn): | ||||
|     net = copy.deepcopy(self) | ||||
|     if bn==False: | ||||
|         for l in net.modules(): | ||||
|             if isinstance(l,nn.BatchNorm2d) or isinstance(l,nn.BatchNorm1d) : | ||||
|                 l.forward = types.MethodType(no_op, l) | ||||
|     return net | ||||
|  | ||||
| def find_measures_arrays(net_orig, trainloader, dataload_info, device, measure_names=None, loss_fn=F.cross_entropy): | ||||
|     if measure_names is None: | ||||
|         measure_names = measures.available_measures | ||||
|  | ||||
|     dataload, num_imgs_or_batches, num_classes = dataload_info | ||||
|  | ||||
|     if not hasattr(net_orig,'get_prunable_copy'): | ||||
|         net_orig.get_prunable_copy = types.MethodType(copynet, net_orig) | ||||
|  | ||||
|     #move to cpu to free up mem | ||||
|     torch.cuda.empty_cache() | ||||
|     net_orig = net_orig.cpu()  | ||||
|     torch.cuda.empty_cache() | ||||
|  | ||||
|     #given 1 minibatch of data | ||||
|     if dataload == 'random': | ||||
|         inputs, targets = get_some_data(trainloader, num_batches=num_imgs_or_batches, device=device) | ||||
|     elif dataload == 'grasp': | ||||
|         inputs, targets = get_some_data_grasp(trainloader, num_classes, samples_per_class=num_imgs_or_batches, device=device) | ||||
|     else: | ||||
|         raise NotImplementedError(f'dataload {dataload} is not supported') | ||||
|  | ||||
|     done, ds = False, 1 | ||||
|     measure_values = {} | ||||
|  | ||||
|     while not done: | ||||
|         try: | ||||
|             for measure_name in measure_names: | ||||
|                 if measure_name not in measure_values: | ||||
|                     val = measures.calc_measure(measure_name, net_orig, device, inputs, targets, loss_fn=loss_fn, split_data=ds) | ||||
|                     measure_values[measure_name] = val | ||||
|  | ||||
|             done = True | ||||
|         except RuntimeError as e: | ||||
|             if 'out of memory' in str(e): | ||||
|                 done=False | ||||
|                 if ds == inputs.shape[0]//2: | ||||
|                     raise ValueError(f'Can\'t split data anymore, but still unable to run. Something is wrong')  | ||||
|                 ds += 1 | ||||
|                 while inputs.shape[0] % ds != 0: | ||||
|                     ds += 1 | ||||
|                 torch.cuda.empty_cache() | ||||
|                 print(f'Caught CUDA OOM, retrying with data split into {ds} parts') | ||||
|             else: | ||||
|                 raise e | ||||
|  | ||||
|     net_orig = net_orig.to(device).train() | ||||
|     return measure_values | ||||
|  | ||||
| def find_measures(net_orig,                  # neural network | ||||
|                   dataloader,                # a data loader (typically for training data) | ||||
|                   dataload_info,             # a tuple with (dataload_type = {random, grasp}, number_of_batches_for_random_or_images_per_class_for_grasp, number of classes) | ||||
|                   device,                    # GPU/CPU device used | ||||
|                   loss_fn=F.cross_entropy,   # loss function to use within the zero-cost metrics | ||||
|                   measure_names=None,        # an array of measure names to compute, if left blank, all measures are computed by default | ||||
|                   measures_arr=None):        # [not used] if the measures are already computed but need to be summarized, pass them here | ||||
|      | ||||
|     #Given a neural net | ||||
|     #and some information about the input data (dataloader) | ||||
|     #and loss function (loss_fn) | ||||
|     #this function returns an array of zero-cost proxy metrics. | ||||
|  | ||||
|     def sum_arr(arr): | ||||
|         sum = 0. | ||||
|         for i in range(len(arr)): | ||||
|             sum += torch.sum(arr[i]) | ||||
|         return sum.item() | ||||
|  | ||||
|     if measures_arr is None: | ||||
|         measures_arr = find_measures_arrays(net_orig, dataloader, dataload_info, device, loss_fn=loss_fn, measure_names=measure_names) | ||||
|  | ||||
|     measures = {} | ||||
|     for k,v in measures_arr.items(): | ||||
|         if k in ['jacob_cov', 'var', 'cor', 'norm', 'meco', 'zico', 'ntk', 'gradsign', 'zen']: | ||||
|             measures[k] = v | ||||
|         else: | ||||
|             measures[k] = sum_arr(v) | ||||
|  | ||||
|     return measures | ||||
							
								
								
									
										51
									
								
								correlation/foresight/version.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										51
									
								
								correlation/foresight/version.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,51 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| version = '1.0.0' | ||||
| repo = 'unknown' | ||||
| commit = 'unknown' | ||||
| has_repo = False | ||||
|  | ||||
| try: | ||||
|     import git | ||||
|     from pathlib import Path | ||||
|  | ||||
|     try: | ||||
|         r = git.Repo(Path(__file__).parents[1]) | ||||
|         has_repo = True | ||||
|  | ||||
|         if not r.remotes: | ||||
|             repo = 'local' | ||||
|         else: | ||||
|             repo = r.remotes.origin.url | ||||
|  | ||||
|         commit = r.head.commit.hexsha | ||||
|         if r.is_dirty(): | ||||
|             commit += ' (dirty)' | ||||
|     except git.InvalidGitRepositoryError: | ||||
|         raise ImportError() | ||||
| except ImportError: | ||||
|     pass | ||||
|  | ||||
| try: | ||||
|     from . import _dist_info as info | ||||
|     assert not has_repo, '_dist_info should not exist when repo is in place' | ||||
|     assert version == info.version | ||||
|     repo = info.repo | ||||
|     commit = info.commit | ||||
| except (ImportError, SystemError): | ||||
|     pass | ||||
|  | ||||
| __all__ = ['version', 'repo', 'commit', 'has_repo'] | ||||
							
								
								
									
										84
									
								
								correlation/foresight/weight_initializers.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										84
									
								
								correlation/foresight/weight_initializers.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,84 @@ | ||||
| # Copyright 2021 Samsung Electronics Co., Ltd. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
|  | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
|  | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================= | ||||
|  | ||||
| import torch.nn as nn | ||||
|  | ||||
| def init_net(net, w_type, b_type): | ||||
|     if w_type == 'none': | ||||
|         pass | ||||
|     elif w_type == 'xavier': | ||||
|         net.apply(init_weights_vs) | ||||
|     elif w_type == 'kaiming': | ||||
|         net.apply(init_weights_he) | ||||
|     elif w_type == 'zero': | ||||
|         net.apply(init_weights_zero) | ||||
|     elif w_type == 'one': | ||||
|         net.apply(init_weights_one) | ||||
|     else: | ||||
|         raise NotImplementedError(f'init_type={w_type} is not supported.') | ||||
|  | ||||
|     if b_type == 'none': | ||||
|         pass | ||||
|     elif b_type == 'xavier': | ||||
|         net.apply(init_bias_vs) | ||||
|     elif b_type == 'kaiming': | ||||
|         net.apply(init_bias_he) | ||||
|     elif b_type == 'zero': | ||||
|         net.apply(init_bias_zero) | ||||
|     elif b_type == 'one': | ||||
|         net.apply(init_bias_one) | ||||
|     else: | ||||
|         raise NotImplementedError(f'init_type={b_type} is not supported.') | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| def init_weights_vs(m): | ||||
|     if type(m) == nn.Linear or type(m) == nn.Conv2d: | ||||
|         nn.init.xavier_normal_(m.weight) | ||||
|  | ||||
| def init_bias_vs(m): | ||||
|     if type(m) == nn.Linear or type(m) == nn.Conv2d: | ||||
|         if m.bias is not None: | ||||
|             nn.init.xavier_normal_(m.bias) | ||||
|  | ||||
| def init_weights_he(m): | ||||
|     if type(m) == nn.Linear or type(m) == nn.Conv2d: | ||||
|         nn.init.kaiming_normal_(m.weight) | ||||
|  | ||||
| def init_bias_he(m): | ||||
|     if type(m) == nn.Linear or type(m) == nn.Conv2d: | ||||
|         if m.bias is not None: | ||||
|             nn.init.kaiming_normal_(m.bias) | ||||
|  | ||||
| def init_weights_zero(m): | ||||
|     if type(m) == nn.Linear or type(m) == nn.Conv2d: | ||||
|         m.weight.data.fill_(.0) | ||||
|  | ||||
| def init_weights_one(m): | ||||
|     if type(m) == nn.Linear or type(m) == nn.Conv2d: | ||||
|         m.weight.data.fill_(1.) | ||||
|  | ||||
| def init_bias_zero(m): | ||||
|     if type(m) == nn.Linear or type(m) == nn.Conv2d: | ||||
|         if m.bias is not None: | ||||
|             m.bias.data.fill_(.0) | ||||
|  | ||||
|  | ||||
| def init_bias_one(m): | ||||
|     if type(m) == nn.Linear or type(m) == nn.Conv2d: | ||||
|         if m.bias is not None: | ||||
|             m.bias.data.fill_(1.) | ||||
|      | ||||
							
								
								
									
										117
									
								
								correlation/models/CifarDenseNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										117
									
								
								correlation/models/CifarDenseNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,117 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class Bottleneck(nn.Module): | ||||
|     def __init__(self, nChannels, growthRate): | ||||
|         super(Bottleneck, self).__init__() | ||||
|         interChannels = 4 * growthRate | ||||
|         self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|         self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False) | ||||
|         self.bn2 = nn.BatchNorm2d(interChannels) | ||||
|         self.conv2 = nn.Conv2d( | ||||
|             interChannels, growthRate, kernel_size=3, padding=1, bias=False | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv1(F.relu(self.bn1(x))) | ||||
|         out = self.conv2(F.relu(self.bn2(out))) | ||||
|         out = torch.cat((x, out), 1) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class SingleLayer(nn.Module): | ||||
|     def __init__(self, nChannels, growthRate): | ||||
|         super(SingleLayer, self).__init__() | ||||
|         self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|         self.conv1 = nn.Conv2d( | ||||
|             nChannels, growthRate, kernel_size=3, padding=1, bias=False | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv1(F.relu(self.bn1(x))) | ||||
|         out = torch.cat((x, out), 1) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class Transition(nn.Module): | ||||
|     def __init__(self, nChannels, nOutChannels): | ||||
|         super(Transition, self).__init__() | ||||
|         self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|         self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1, bias=False) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv1(F.relu(self.bn1(x))) | ||||
|         out = F.avg_pool2d(out, 2) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class DenseNet(nn.Module): | ||||
|     def __init__(self, growthRate, depth, reduction, nClasses, bottleneck): | ||||
|         super(DenseNet, self).__init__() | ||||
|  | ||||
|         if bottleneck: | ||||
|             nDenseBlocks = int((depth - 4) / 6) | ||||
|         else: | ||||
|             nDenseBlocks = int((depth - 4) / 3) | ||||
|  | ||||
|         self.message = "CifarDenseNet : block : {:}, depth : {:}, reduction : {:}, growth-rate = {:}, class = {:}".format( | ||||
|             "bottleneck" if bottleneck else "basic", | ||||
|             depth, | ||||
|             reduction, | ||||
|             growthRate, | ||||
|             nClasses, | ||||
|         ) | ||||
|  | ||||
|         nChannels = 2 * growthRate | ||||
|         self.conv1 = nn.Conv2d(3, nChannels, kernel_size=3, padding=1, bias=False) | ||||
|  | ||||
|         self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|         nChannels += nDenseBlocks * growthRate | ||||
|         nOutChannels = int(math.floor(nChannels * reduction)) | ||||
|         self.trans1 = Transition(nChannels, nOutChannels) | ||||
|  | ||||
|         nChannels = nOutChannels | ||||
|         self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|         nChannels += nDenseBlocks * growthRate | ||||
|         nOutChannels = int(math.floor(nChannels * reduction)) | ||||
|         self.trans2 = Transition(nChannels, nOutChannels) | ||||
|  | ||||
|         nChannels = nOutChannels | ||||
|         self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|         nChannels += nDenseBlocks * growthRate | ||||
|  | ||||
|         self.act = nn.Sequential( | ||||
|             nn.BatchNorm2d(nChannels), nn.ReLU(inplace=True), nn.AvgPool2d(8) | ||||
|         ) | ||||
|         self.fc = nn.Linear(nChannels, nClasses) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck): | ||||
|         layers = [] | ||||
|         for i in range(int(nDenseBlocks)): | ||||
|             if bottleneck: | ||||
|                 layers.append(Bottleneck(nChannels, growthRate)) | ||||
|             else: | ||||
|                 layers.append(SingleLayer(nChannels, growthRate)) | ||||
|             nChannels += growthRate | ||||
|         return nn.Sequential(*layers) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         out = self.conv1(inputs) | ||||
|         out = self.trans1(self.dense1(out)) | ||||
|         out = self.trans2(self.dense2(out)) | ||||
|         out = self.dense3(out) | ||||
|         features = self.act(out) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         out = self.fc(features) | ||||
|         return features, out | ||||
							
								
								
									
										180
									
								
								correlation/models/CifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										180
									
								
								correlation/models/CifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,180 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
| from .SharedUtils import additive_func | ||||
|  | ||||
|  | ||||
| class Downsample(nn.Module): | ||||
|     def __init__(self, nIn, nOut, stride): | ||||
|         super(Downsample, self).__init__() | ||||
|         assert stride == 2 and nOut == 2 * nIn, "stride:{} IO:{},{}".format( | ||||
|             stride, nIn, nOut | ||||
|         ) | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|         self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, padding=0, bias=False) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.avg(x) | ||||
|         out = self.conv(x) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__(self, nIn, nOut, kernel, stride, padding, bias, relu): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, bias=bias | ||||
|         ) | ||||
|         self.bn = nn.BatchNorm2d(nOut) | ||||
|         if relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|         self.out_dim = nOut | ||||
|         self.num_conv = 1 | ||||
|  | ||||
|     def forward(self, x): | ||||
|         conv = self.conv(x) | ||||
|         bn = self.bn(conv) | ||||
|         if self.relu: | ||||
|             return self.relu(bn) | ||||
|         else: | ||||
|             return bn | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, True) | ||||
|         self.conv_b = ConvBNReLU(planes, planes, 3, 1, 1, False, False) | ||||
|         if stride == 2: | ||||
|             self.downsample = Downsample(inplanes, planes, stride) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, False) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.num_conv = 2 | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, True) | ||||
|         self.conv_3x3 = ConvBNReLU(planes, planes, 3, stride, 1, False, True) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, planes * self.expansion, 1, 1, 0, False, False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = Downsample(inplanes, planes * self.expansion, stride) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, planes * self.expansion, 1, 1, 0, False, False | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|         self.num_conv = 3 | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, bottleneck) | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class CifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, num_classes, zero_init_residual): | ||||
|         super(CifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = "CifarResNet : Block : {:}, Depth : {:}, Layers for each block : {:}".format( | ||||
|             block_name, depth, layer_blocks | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.channels = [16] | ||||
|         self.layers = nn.ModuleList([ConvBNReLU(3, 16, 3, 1, 1, False, True)]) | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         assert ( | ||||
|             sum(x.num_conv for x in self.layers) + 1 == depth | ||||
|         ), "invalid depth check {:} vs {:}".format( | ||||
|             sum(x.num_conv for x in self.layers) + 1, depth | ||||
|         ) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, ResNetBasicblock): | ||||
|                     nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|                 elif isinstance(m, ResNetBottleneck): | ||||
|                     nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										115
									
								
								correlation/models/CifarWideResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										115
									
								
								correlation/models/CifarWideResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,115 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class WideBasicblock(nn.Module): | ||||
|     def __init__(self, inplanes, planes, stride, dropout=False): | ||||
|         super(WideBasicblock, self).__init__() | ||||
|  | ||||
|         self.bn_a = nn.BatchNorm2d(inplanes) | ||||
|         self.conv_a = nn.Conv2d( | ||||
|             inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False | ||||
|         ) | ||||
|  | ||||
|         self.bn_b = nn.BatchNorm2d(planes) | ||||
|         if dropout: | ||||
|             self.dropout = nn.Dropout2d(p=0.5, inplace=True) | ||||
|         else: | ||||
|             self.dropout = None | ||||
|         self.conv_b = nn.Conv2d( | ||||
|             planes, planes, kernel_size=3, stride=1, padding=1, bias=False | ||||
|         ) | ||||
|  | ||||
|         if inplanes != planes: | ||||
|             self.downsample = nn.Conv2d( | ||||
|                 inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|  | ||||
|     def forward(self, x): | ||||
|  | ||||
|         basicblock = self.bn_a(x) | ||||
|         basicblock = F.relu(basicblock) | ||||
|         basicblock = self.conv_a(basicblock) | ||||
|  | ||||
|         basicblock = self.bn_b(basicblock) | ||||
|         basicblock = F.relu(basicblock) | ||||
|         if self.dropout is not None: | ||||
|             basicblock = self.dropout(basicblock) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             x = self.downsample(x) | ||||
|  | ||||
|         return x + basicblock | ||||
|  | ||||
|  | ||||
| class CifarWideResNet(nn.Module): | ||||
|     """ | ||||
|     ResNet optimized for the Cifar dataset, as specified in | ||||
|     https://arxiv.org/abs/1512.03385.pdf | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, depth, widen_factor, num_classes, dropout): | ||||
|         super(CifarWideResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         assert (depth - 4) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|         layer_blocks = (depth - 4) // 6 | ||||
|         print( | ||||
|             "CifarPreResNet : Depth : {} , Layers for each block : {}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|         self.num_classes = num_classes | ||||
|         self.dropout = dropout | ||||
|         self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) | ||||
|  | ||||
|         self.message = "Wide ResNet : depth={:}, widen_factor={:}, class={:}".format( | ||||
|             depth, widen_factor, num_classes | ||||
|         ) | ||||
|         self.inplanes = 16 | ||||
|         self.stage_1 = self._make_layer( | ||||
|             WideBasicblock, 16 * widen_factor, layer_blocks, 1 | ||||
|         ) | ||||
|         self.stage_2 = self._make_layer( | ||||
|             WideBasicblock, 32 * widen_factor, layer_blocks, 2 | ||||
|         ) | ||||
|         self.stage_3 = self._make_layer( | ||||
|             WideBasicblock, 64 * widen_factor, layer_blocks, 2 | ||||
|         ) | ||||
|         self.lastact = nn.Sequential( | ||||
|             nn.BatchNorm2d(64 * widen_factor), nn.ReLU(inplace=True) | ||||
|         ) | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(64 * widen_factor, num_classes) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def _make_layer(self, block, planes, blocks, stride): | ||||
|  | ||||
|         layers = [] | ||||
|         layers.append(block(self.inplanes, planes, stride, self.dropout)) | ||||
|         self.inplanes = planes | ||||
|         for i in range(1, blocks): | ||||
|             layers.append(block(self.inplanes, planes, 1, self.dropout)) | ||||
|  | ||||
|         return nn.Sequential(*layers) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.conv_3x3(x) | ||||
|         x = self.stage_1(x) | ||||
|         x = self.stage_2(x) | ||||
|         x = self.stage_3(x) | ||||
|         x = self.lastact(x) | ||||
|         x = self.avgpool(x) | ||||
|         features = x.view(x.size(0), -1) | ||||
|         outs = self.classifier(features) | ||||
|         return features, outs | ||||
							
								
								
									
										117
									
								
								correlation/models/ImageNet_MobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										117
									
								
								correlation/models/ImageNet_MobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,117 @@ | ||||
| # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 | ||||
| from torch import nn | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         padding = (kernel_size - 1) // 2 | ||||
|         self.conv = nn.Conv2d( | ||||
|             in_planes, | ||||
|             out_planes, | ||||
|             kernel_size, | ||||
|             stride, | ||||
|             padding, | ||||
|             groups=groups, | ||||
|             bias=False, | ||||
|         ) | ||||
|         self.bn = nn.BatchNorm2d(out_planes) | ||||
|         self.relu = nn.ReLU6(inplace=True) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv(x) | ||||
|         out = self.bn(out) | ||||
|         out = self.relu(out) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class InvertedResidual(nn.Module): | ||||
|     def __init__(self, inp, oup, stride, expand_ratio): | ||||
|         super(InvertedResidual, self).__init__() | ||||
|         self.stride = stride | ||||
|         assert stride in [1, 2] | ||||
|  | ||||
|         hidden_dim = int(round(inp * expand_ratio)) | ||||
|         self.use_res_connect = self.stride == 1 and inp == oup | ||||
|  | ||||
|         layers = [] | ||||
|         if expand_ratio != 1: | ||||
|             # pw | ||||
|             layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) | ||||
|         layers.extend( | ||||
|             [ | ||||
|                 # dw | ||||
|                 ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), | ||||
|                 # pw-linear | ||||
|                 nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | ||||
|                 nn.BatchNorm2d(oup), | ||||
|             ] | ||||
|         ) | ||||
|         self.conv = nn.Sequential(*layers) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         if self.use_res_connect: | ||||
|             return x + self.conv(x) | ||||
|         else: | ||||
|             return self.conv(x) | ||||
|  | ||||
|  | ||||
| class MobileNetV2(nn.Module): | ||||
|     def __init__( | ||||
|         self, num_classes, width_mult, input_channel, last_channel, block_name, dropout | ||||
|     ): | ||||
|         super(MobileNetV2, self).__init__() | ||||
|         if block_name == "InvertedResidual": | ||||
|             block = InvertedResidual | ||||
|         else: | ||||
|             raise ValueError("invalid block name : {:}".format(block_name)) | ||||
|         inverted_residual_setting = [ | ||||
|             # t, c,  n, s | ||||
|             [1, 16, 1, 1], | ||||
|             [6, 24, 2, 2], | ||||
|             [6, 32, 3, 2], | ||||
|             [6, 64, 4, 2], | ||||
|             [6, 96, 3, 1], | ||||
|             [6, 160, 3, 2], | ||||
|             [6, 320, 1, 1], | ||||
|         ] | ||||
|  | ||||
|         # building first layer | ||||
|         input_channel = int(input_channel * width_mult) | ||||
|         self.last_channel = int(last_channel * max(1.0, width_mult)) | ||||
|         features = [ConvBNReLU(3, input_channel, stride=2)] | ||||
|         # building inverted residual blocks | ||||
|         for t, c, n, s in inverted_residual_setting: | ||||
|             output_channel = int(c * width_mult) | ||||
|             for i in range(n): | ||||
|                 stride = s if i == 0 else 1 | ||||
|                 features.append( | ||||
|                     block(input_channel, output_channel, stride, expand_ratio=t) | ||||
|                 ) | ||||
|                 input_channel = output_channel | ||||
|         # building last several layers | ||||
|         features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) | ||||
|         # make it nn.Sequential | ||||
|         self.features = nn.Sequential(*features) | ||||
|  | ||||
|         # building classifier | ||||
|         self.classifier = nn.Sequential( | ||||
|             nn.Dropout(dropout), | ||||
|             nn.Linear(self.last_channel, num_classes), | ||||
|         ) | ||||
|         self.message = "MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}".format( | ||||
|             width_mult, input_channel, last_channel, block_name, dropout | ||||
|         ) | ||||
|  | ||||
|         # weight initialization | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         features = self.features(inputs) | ||||
|         vectors = features.mean([2, 3]) | ||||
|         predicts = self.classifier(vectors) | ||||
|         return features, predicts | ||||
							
								
								
									
										217
									
								
								correlation/models/ImageNet_ResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										217
									
								
								correlation/models/ImageNet_ResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,217 @@ | ||||
| # Deep Residual Learning for Image Recognition, CVPR 2016 | ||||
| import torch.nn as nn | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| def conv3x3(in_planes, out_planes, stride=1, groups=1): | ||||
|     return nn.Conv2d( | ||||
|         in_planes, | ||||
|         out_planes, | ||||
|         kernel_size=3, | ||||
|         stride=stride, | ||||
|         padding=1, | ||||
|         groups=groups, | ||||
|         bias=False, | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def conv1x1(in_planes, out_planes, stride=1): | ||||
|     return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | ||||
|  | ||||
|  | ||||
| class BasicBlock(nn.Module): | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64 | ||||
|     ): | ||||
|         super(BasicBlock, self).__init__() | ||||
|         if groups != 1 or base_width != 64: | ||||
|             raise ValueError("BasicBlock only supports groups=1 and base_width=64") | ||||
|         # Both self.conv1 and self.downsample layers downsample the input when stride != 1 | ||||
|         self.conv1 = conv3x3(inplanes, planes, stride) | ||||
|         self.bn1 = nn.BatchNorm2d(planes) | ||||
|         self.relu = nn.ReLU(inplace=True) | ||||
|         self.conv2 = conv3x3(planes, planes) | ||||
|         self.bn2 = nn.BatchNorm2d(planes) | ||||
|         self.downsample = downsample | ||||
|         self.stride = stride | ||||
|  | ||||
|     def forward(self, x): | ||||
|         identity = x | ||||
|  | ||||
|         out = self.conv1(x) | ||||
|         out = self.bn1(out) | ||||
|         out = self.relu(out) | ||||
|  | ||||
|         out = self.conv2(out) | ||||
|         out = self.bn2(out) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             identity = self.downsample(x) | ||||
|  | ||||
|         out += identity | ||||
|         out = self.relu(out) | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class Bottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|  | ||||
|     def __init__( | ||||
|         self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64 | ||||
|     ): | ||||
|         super(Bottleneck, self).__init__() | ||||
|         width = int(planes * (base_width / 64.0)) * groups | ||||
|         # Both self.conv2 and self.downsample layers downsample the input when stride != 1 | ||||
|         self.conv1 = conv1x1(inplanes, width) | ||||
|         self.bn1 = nn.BatchNorm2d(width) | ||||
|         self.conv2 = conv3x3(width, width, stride, groups) | ||||
|         self.bn2 = nn.BatchNorm2d(width) | ||||
|         self.conv3 = conv1x1(width, planes * self.expansion) | ||||
|         self.bn3 = nn.BatchNorm2d(planes * self.expansion) | ||||
|         self.relu = nn.ReLU(inplace=True) | ||||
|         self.downsample = downsample | ||||
|         self.stride = stride | ||||
|  | ||||
|     def forward(self, x): | ||||
|         identity = x | ||||
|  | ||||
|         out = self.conv1(x) | ||||
|         out = self.bn1(out) | ||||
|         out = self.relu(out) | ||||
|  | ||||
|         out = self.conv2(out) | ||||
|         out = self.bn2(out) | ||||
|         out = self.relu(out) | ||||
|  | ||||
|         out = self.conv3(out) | ||||
|         out = self.bn3(out) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             identity = self.downsample(x) | ||||
|  | ||||
|         out += identity | ||||
|         out = self.relu(out) | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNet(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         block_name, | ||||
|         layers, | ||||
|         deep_stem, | ||||
|         num_classes, | ||||
|         zero_init_residual, | ||||
|         groups, | ||||
|         width_per_group, | ||||
|     ): | ||||
|         super(ResNet, self).__init__() | ||||
|  | ||||
|         # planes = [int(width_per_group * groups * 2 ** i) for i in range(4)] | ||||
|         if block_name == "BasicBlock": | ||||
|             block = BasicBlock | ||||
|         elif block_name == "Bottleneck": | ||||
|             block = Bottleneck | ||||
|         else: | ||||
|             raise ValueError("invalid block-name : {:}".format(block_name)) | ||||
|  | ||||
|         if not deep_stem: | ||||
|             self.conv = nn.Sequential( | ||||
|                 nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False), | ||||
|                 nn.BatchNorm2d(64), | ||||
|                 nn.ReLU(inplace=True), | ||||
|             ) | ||||
|         else: | ||||
|             self.conv = nn.Sequential( | ||||
|                 nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False), | ||||
|                 nn.BatchNorm2d(32), | ||||
|                 nn.ReLU(inplace=True), | ||||
|                 nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False), | ||||
|                 nn.BatchNorm2d(32), | ||||
|                 nn.ReLU(inplace=True), | ||||
|                 nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), | ||||
|                 nn.BatchNorm2d(64), | ||||
|                 nn.ReLU(inplace=True), | ||||
|             ) | ||||
|         self.inplanes = 64 | ||||
|         self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||
|         self.layer1 = self._make_layer( | ||||
|             block, 64, layers[0], stride=1, groups=groups, base_width=width_per_group | ||||
|         ) | ||||
|         self.layer2 = self._make_layer( | ||||
|             block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group | ||||
|         ) | ||||
|         self.layer3 = self._make_layer( | ||||
|             block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group | ||||
|         ) | ||||
|         self.layer4 = self._make_layer( | ||||
|             block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group | ||||
|         ) | ||||
|         self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||||
|         self.fc = nn.Linear(512 * block.expansion, num_classes) | ||||
|         self.message = ( | ||||
|             "block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}".format( | ||||
|                 block, layers, deep_stem, num_classes | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|         # Zero-initialize the last BN in each residual branch, | ||||
|         # so that the residual branch starts with zeros, and each residual block behaves like an identity. | ||||
|         # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, Bottleneck): | ||||
|                     nn.init.constant_(m.bn3.weight, 0) | ||||
|                 elif isinstance(m, BasicBlock): | ||||
|                     nn.init.constant_(m.bn2.weight, 0) | ||||
|  | ||||
|     def _make_layer(self, block, planes, blocks, stride, groups, base_width): | ||||
|         downsample = None | ||||
|         if stride != 1 or self.inplanes != planes * block.expansion: | ||||
|             if stride == 2: | ||||
|                 downsample = nn.Sequential( | ||||
|                     nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|                     conv1x1(self.inplanes, planes * block.expansion, 1), | ||||
|                     nn.BatchNorm2d(planes * block.expansion), | ||||
|                 ) | ||||
|             elif stride == 1: | ||||
|                 downsample = nn.Sequential( | ||||
|                     conv1x1(self.inplanes, planes * block.expansion, stride), | ||||
|                     nn.BatchNorm2d(planes * block.expansion), | ||||
|                 ) | ||||
|             else: | ||||
|                 raise ValueError("invalid stride [{:}] for downsample".format(stride)) | ||||
|  | ||||
|         layers = [] | ||||
|         layers.append( | ||||
|             block(self.inplanes, planes, stride, downsample, groups, base_width) | ||||
|         ) | ||||
|         self.inplanes = planes * block.expansion | ||||
|         for _ in range(1, blocks): | ||||
|             layers.append(block(self.inplanes, planes, 1, None, groups, base_width)) | ||||
|  | ||||
|         return nn.Sequential(*layers) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.conv(x) | ||||
|         x = self.maxpool(x) | ||||
|  | ||||
|         x = self.layer1(x) | ||||
|         x = self.layer2(x) | ||||
|         x = self.layer3(x) | ||||
|         x = self.layer4(x) | ||||
|  | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.fc(features) | ||||
|  | ||||
|         return features, logits | ||||
							
								
								
									
										37
									
								
								correlation/models/SharedUtils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								correlation/models/SharedUtils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,37 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def additive_func(A, B): | ||||
|     assert A.dim() == B.dim() and A.size(0) == B.size(0), "{:} vs {:}".format( | ||||
|         A.size(), B.size() | ||||
|     ) | ||||
|     C = min(A.size(1), B.size(1)) | ||||
|     if A.size(1) == B.size(1): | ||||
|         return A + B | ||||
|     elif A.size(1) < B.size(1): | ||||
|         out = B.clone() | ||||
|         out[:, :C] += A | ||||
|         return out | ||||
|     else: | ||||
|         out = A.clone() | ||||
|         out[:, :C] += B | ||||
|         return out | ||||
|  | ||||
|  | ||||
| def change_key(key, value): | ||||
|     def func(m): | ||||
|         if hasattr(m, key): | ||||
|             setattr(m, key, value) | ||||
|  | ||||
|     return func | ||||
|  | ||||
|  | ||||
| def parse_channel_info(xstring): | ||||
|     blocks = xstring.split(" ") | ||||
|     blocks = [x.split("-") for x in blocks] | ||||
|     blocks = [[int(_) for _ in x] for x in blocks] | ||||
|     return blocks | ||||
							
								
								
									
										329
									
								
								correlation/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										329
									
								
								correlation/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,329 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from os import path as osp | ||||
| from typing import List, Text | ||||
| import torch | ||||
|  | ||||
| __all__ = [ | ||||
|     "change_key", | ||||
|     "get_cell_based_tiny_net", | ||||
|     "get_search_spaces", | ||||
|     "get_cifar_models", | ||||
|     "get_imagenet_models", | ||||
|     "obtain_model", | ||||
|     "obtain_search_model", | ||||
|     "load_net_from_checkpoint", | ||||
|     "CellStructure", | ||||
|     "CellArchitectures", | ||||
| ] | ||||
|  | ||||
| # useful modules | ||||
| from xautodl.config_utils import dict2config | ||||
| from .SharedUtils import change_key | ||||
| from .cell_searchs import CellStructure, CellArchitectures | ||||
|  | ||||
|  | ||||
| # Cell-based NAS Models | ||||
| def get_cell_based_tiny_net(config): | ||||
|     if isinstance(config, dict): | ||||
|         config = dict2config(config, None)  # to support the argument being a dict | ||||
|         # print(config) | ||||
|     super_type = getattr(config, "super_type", "basic") | ||||
|     # print(super_type) | ||||
|     group_names = ["DARTS-V1", "DARTS-V2", "GDAS", "SETN", "ENAS", "RANDOM", "generic"] | ||||
|     if super_type == "basic" and config.name in group_names: | ||||
|         from .cell_searchs import nas201_super_nets as nas_super_nets | ||||
|  | ||||
|         try: | ||||
|             return nas_super_nets[config.name]( | ||||
|                 config.C, | ||||
|                 config.N, | ||||
|                 config.max_nodes, | ||||
|                 config.num_classes, | ||||
|                 config.space, | ||||
|                 config.affine, | ||||
|                 config.track_running_stats, | ||||
|             ) | ||||
|         except: | ||||
|             return nas_super_nets[config.name]( | ||||
|                 config.C, config.N, config.max_nodes, config.num_classes, config.space | ||||
|             ) | ||||
|     elif super_type == "search-shape": | ||||
|         from .shape_searchs import GenericNAS301Model | ||||
|  | ||||
|         genotype = CellStructure.str2structure(config.genotype) | ||||
|         return GenericNAS301Model( | ||||
|             config.candidate_Cs, | ||||
|             config.max_num_Cs, | ||||
|             genotype, | ||||
|             config.num_classes, | ||||
|             config.affine, | ||||
|             config.track_running_stats, | ||||
|         ) | ||||
|     elif super_type == "nasnet-super": | ||||
|         from .cell_searchs import nasnet_super_nets as nas_super_nets | ||||
|  | ||||
|         return nas_super_nets[config.name]( | ||||
|             config.C, | ||||
|             config.N, | ||||
|             config.steps, | ||||
|             config.multiplier, | ||||
|             config.stem_multiplier, | ||||
|             config.num_classes, | ||||
|             config.space, | ||||
|             config.affine, | ||||
|             config.track_running_stats, | ||||
|         ) | ||||
|     elif config.name == "infer.tiny": | ||||
|         from .cell_infers import TinyNetwork | ||||
|  | ||||
|         if hasattr(config, "genotype"): | ||||
|             genotype = config.genotype | ||||
|         elif hasattr(config, "arch_str"): | ||||
|             genotype = CellStructure.str2structure(config.arch_str) | ||||
|         else: | ||||
|             raise ValueError( | ||||
|                 "Can not find genotype from this config : {:}".format(config) | ||||
|             ) | ||||
|         return TinyNetwork(config.C, config.N, genotype, config.num_classes) | ||||
|     # sss 网络用到的 | ||||
|     elif config.name == "infer.shape.tiny": | ||||
|         from .shape_infers import DynamicShapeTinyNet | ||||
|  | ||||
|         if isinstance(config.channels, str): | ||||
|             channels = tuple([int(x) for x in config.channels.split(":")]) | ||||
|         else: | ||||
|             channels = config.channels | ||||
|         genotype = CellStructure.str2structure(config.genotype) | ||||
|         return DynamicShapeTinyNet(channels, genotype, config.num_classes) | ||||
|     elif config.name == "infer.nasnet-cifar": | ||||
|         from .cell_infers import NASNetonCIFAR | ||||
|  | ||||
|         raise NotImplementedError | ||||
|     else: | ||||
|         raise ValueError("invalid network name : {:}".format(config.name)) | ||||
|  | ||||
|  | ||||
| # obtain the search space, i.e., a dict mapping the operation name into a python-function for this op | ||||
| def get_search_spaces(xtype, name) -> List[Text]: | ||||
|     if xtype == "cell" or xtype == "tss":  # The topology search space. | ||||
|         from .cell_operations import SearchSpaceNames | ||||
|  | ||||
|         assert name in SearchSpaceNames, "invalid name [{:}] in {:}".format( | ||||
|             name, SearchSpaceNames.keys() | ||||
|         ) | ||||
|         return SearchSpaceNames[name] | ||||
|     elif xtype == "sss":  # The size search space. | ||||
|         if name in ["nats-bench", "nats-bench-size"]: | ||||
|             return {"candidates": [8, 16, 24, 32, 40, 48, 56, 64], "numbers": 5} | ||||
|         else: | ||||
|             raise ValueError("Invalid name : {:}".format(name)) | ||||
|     else: | ||||
|         raise ValueError("invalid search-space type is {:}".format(xtype)) | ||||
|  | ||||
|  | ||||
| def get_cifar_models(config, extra_path=None): | ||||
|     super_type = getattr(config, "super_type", "basic") | ||||
|     if super_type == "basic": | ||||
|         from .CifarResNet import CifarResNet | ||||
|         from .CifarDenseNet import DenseNet | ||||
|         from .CifarWideResNet import CifarWideResNet | ||||
|  | ||||
|         if config.arch == "resnet": | ||||
|             return CifarResNet( | ||||
|                 config.module, config.depth, config.class_num, config.zero_init_residual | ||||
|             ) | ||||
|         elif config.arch == "densenet": | ||||
|             return DenseNet( | ||||
|                 config.growthRate, | ||||
|                 config.depth, | ||||
|                 config.reduction, | ||||
|                 config.class_num, | ||||
|                 config.bottleneck, | ||||
|             ) | ||||
|         elif config.arch == "wideresnet": | ||||
|             return CifarWideResNet( | ||||
|                 config.depth, config.wide_factor, config.class_num, config.dropout | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid module type : {:}".format(config.arch)) | ||||
|     elif super_type.startswith("infer"): | ||||
|         from .shape_infers import InferWidthCifarResNet | ||||
|         from .shape_infers import InferDepthCifarResNet | ||||
|         from .shape_infers import InferCifarResNet | ||||
|         from .cell_infers import NASNetonCIFAR | ||||
|  | ||||
|         assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format( | ||||
|             super_type | ||||
|         ) | ||||
|         infer_mode = super_type.split("-")[1] | ||||
|         if infer_mode == "width": | ||||
|             return InferWidthCifarResNet( | ||||
|                 config.module, | ||||
|                 config.depth, | ||||
|                 config.xchannels, | ||||
|                 config.class_num, | ||||
|                 config.zero_init_residual, | ||||
|             ) | ||||
|         elif infer_mode == "depth": | ||||
|             return InferDepthCifarResNet( | ||||
|                 config.module, | ||||
|                 config.depth, | ||||
|                 config.xblocks, | ||||
|                 config.class_num, | ||||
|                 config.zero_init_residual, | ||||
|             ) | ||||
|         elif infer_mode == "shape": | ||||
|             return InferCifarResNet( | ||||
|                 config.module, | ||||
|                 config.depth, | ||||
|                 config.xblocks, | ||||
|                 config.xchannels, | ||||
|                 config.class_num, | ||||
|                 config.zero_init_residual, | ||||
|             ) | ||||
|         elif infer_mode == "nasnet.cifar": | ||||
|             genotype = config.genotype | ||||
|             if extra_path is not None:  # reload genotype by extra_path | ||||
|                 if not osp.isfile(extra_path): | ||||
|                     raise ValueError("invalid extra_path : {:}".format(extra_path)) | ||||
|                 xdata = torch.load(extra_path) | ||||
|                 current_epoch = xdata["epoch"] | ||||
|                 genotype = xdata["genotypes"][current_epoch - 1] | ||||
|             C = config.C if hasattr(config, "C") else config.ichannel | ||||
|             N = config.N if hasattr(config, "N") else config.layers | ||||
|             return NASNetonCIFAR( | ||||
|                 C, N, config.stem_multi, config.class_num, genotype, config.auxiliary | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid infer-mode : {:}".format(infer_mode)) | ||||
|     else: | ||||
|         raise ValueError("invalid super-type : {:}".format(super_type)) | ||||
|  | ||||
|  | ||||
| def get_imagenet_models(config): | ||||
|     super_type = getattr(config, "super_type", "basic") | ||||
|     if super_type == "basic": | ||||
|         from .ImageNet_ResNet import ResNet | ||||
|         from .ImageNet_MobileNetV2 import MobileNetV2 | ||||
|  | ||||
|         if config.arch == "resnet": | ||||
|             return ResNet( | ||||
|                 config.block_name, | ||||
|                 config.layers, | ||||
|                 config.deep_stem, | ||||
|                 config.class_num, | ||||
|                 config.zero_init_residual, | ||||
|                 config.groups, | ||||
|                 config.width_per_group, | ||||
|             ) | ||||
|         elif config.arch == "mobilenet_v2": | ||||
|             return MobileNetV2( | ||||
|                 config.class_num, | ||||
|                 config.width_multi, | ||||
|                 config.input_channel, | ||||
|                 config.last_channel, | ||||
|                 "InvertedResidual", | ||||
|                 config.dropout, | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid arch : {:}".format(config.arch)) | ||||
|     elif super_type.startswith("infer"):  # NAS searched architecture | ||||
|         assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format( | ||||
|             super_type | ||||
|         ) | ||||
|         infer_mode = super_type.split("-")[1] | ||||
|         if infer_mode == "shape": | ||||
|             from .shape_infers import InferImagenetResNet | ||||
|             from .shape_infers import InferMobileNetV2 | ||||
|  | ||||
|             if config.arch == "resnet": | ||||
|                 return InferImagenetResNet( | ||||
|                     config.block_name, | ||||
|                     config.layers, | ||||
|                     config.xblocks, | ||||
|                     config.xchannels, | ||||
|                     config.deep_stem, | ||||
|                     config.class_num, | ||||
|                     config.zero_init_residual, | ||||
|                 ) | ||||
|             elif config.arch == "MobileNetV2": | ||||
|                 return InferMobileNetV2( | ||||
|                     config.class_num, config.xchannels, config.xblocks, config.dropout | ||||
|                 ) | ||||
|             else: | ||||
|                 raise ValueError("invalid arch-mode : {:}".format(config.arch)) | ||||
|         else: | ||||
|             raise ValueError("invalid infer-mode : {:}".format(infer_mode)) | ||||
|     else: | ||||
|         raise ValueError("invalid super-type : {:}".format(super_type)) | ||||
|  | ||||
|  | ||||
| # Try to obtain the network by config. | ||||
| def obtain_model(config, extra_path=None): | ||||
|     if config.dataset == "cifar": | ||||
|         return get_cifar_models(config, extra_path) | ||||
|     elif config.dataset == "imagenet": | ||||
|         return get_imagenet_models(config) | ||||
|     else: | ||||
|         raise ValueError("invalid dataset in the model config : {:}".format(config)) | ||||
|  | ||||
|  | ||||
| def obtain_search_model(config): | ||||
|     if config.dataset == "cifar": | ||||
|         if config.arch == "resnet": | ||||
|             from .shape_searchs import SearchWidthCifarResNet | ||||
|             from .shape_searchs import SearchDepthCifarResNet | ||||
|             from .shape_searchs import SearchShapeCifarResNet | ||||
|  | ||||
|             if config.search_mode == "width": | ||||
|                 return SearchWidthCifarResNet( | ||||
|                     config.module, config.depth, config.class_num | ||||
|                 ) | ||||
|             elif config.search_mode == "depth": | ||||
|                 return SearchDepthCifarResNet( | ||||
|                     config.module, config.depth, config.class_num | ||||
|                 ) | ||||
|             elif config.search_mode == "shape": | ||||
|                 return SearchShapeCifarResNet( | ||||
|                     config.module, config.depth, config.class_num | ||||
|                 ) | ||||
|             else: | ||||
|                 raise ValueError("invalid search mode : {:}".format(config.search_mode)) | ||||
|         elif config.arch == "simres": | ||||
|             from .shape_searchs import SearchWidthSimResNet | ||||
|  | ||||
|             if config.search_mode == "width": | ||||
|                 return SearchWidthSimResNet(config.depth, config.class_num) | ||||
|             else: | ||||
|                 raise ValueError("invalid search mode : {:}".format(config.search_mode)) | ||||
|         else: | ||||
|             raise ValueError( | ||||
|                 "invalid arch : {:} for dataset [{:}]".format( | ||||
|                     config.arch, config.dataset | ||||
|                 ) | ||||
|             ) | ||||
|     elif config.dataset == "imagenet": | ||||
|         from .shape_searchs import SearchShapeImagenetResNet | ||||
|  | ||||
|         assert config.search_mode == "shape", "invalid search-mode : {:}".format( | ||||
|             config.search_mode | ||||
|         ) | ||||
|         if config.arch == "resnet": | ||||
|             return SearchShapeImagenetResNet( | ||||
|                 config.block_name, config.layers, config.deep_stem, config.class_num | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid model config : {:}".format(config)) | ||||
|     else: | ||||
|         raise ValueError("invalid dataset in the model config : {:}".format(config)) | ||||
|  | ||||
|  | ||||
| def load_net_from_checkpoint(checkpoint): | ||||
|     assert osp.isfile(checkpoint), "checkpoint {:} does not exist".format(checkpoint) | ||||
|     checkpoint = torch.load(checkpoint) | ||||
|     model_config = dict2config(checkpoint["model-config"], None) | ||||
|     model = obtain_model(model_config) | ||||
|     model.load_state_dict(checkpoint["base-model"]) | ||||
|     return model | ||||
							
								
								
									
										5
									
								
								correlation/models/cell_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								correlation/models/cell_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,5 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| from .tiny_network import TinyNetwork | ||||
| from .nasnet_cifar import NASNetonCIFAR | ||||
							
								
								
									
										155
									
								
								correlation/models/cell_infers/cells.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										155
									
								
								correlation/models/cell_infers/cells.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,155 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
|  | ||||
| from xautodl.models.cell_operations import OPS | ||||
|  | ||||
|  | ||||
| # Cell for NAS-Bench-201 | ||||
| class InferCell(nn.Module): | ||||
|     def __init__( | ||||
|         self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True | ||||
|     ): | ||||
|         super(InferCell, self).__init__() | ||||
|  | ||||
|         self.layers = nn.ModuleList() | ||||
|         self.node_IN = [] | ||||
|         self.node_IX = [] | ||||
|         self.genotype = deepcopy(genotype) | ||||
|         for i in range(1, len(genotype)): | ||||
|             node_info = genotype[i - 1] | ||||
|             cur_index = [] | ||||
|             cur_innod = [] | ||||
|             for (op_name, op_in) in node_info: | ||||
|                 if op_in == 0: | ||||
|                     layer = OPS[op_name]( | ||||
|                         C_in, C_out, stride, affine, track_running_stats | ||||
|                     ) | ||||
|                 else: | ||||
|                     layer = OPS[op_name](C_out, C_out, 1, affine, track_running_stats) | ||||
|                 cur_index.append(len(self.layers)) | ||||
|                 cur_innod.append(op_in) | ||||
|                 self.layers.append(layer) | ||||
|             self.node_IX.append(cur_index) | ||||
|             self.node_IN.append(cur_innod) | ||||
|         self.nodes = len(genotype) | ||||
|         self.in_dim = C_in | ||||
|         self.out_dim = C_out | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         string = "info :: nodes={nodes}, inC={in_dim}, outC={out_dim}".format( | ||||
|             **self.__dict__ | ||||
|         ) | ||||
|         laystr = [] | ||||
|         for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)): | ||||
|             y = [ | ||||
|                 "I{:}-L{:}".format(_ii, _il) | ||||
|                 for _il, _ii in zip(node_layers, node_innods) | ||||
|             ] | ||||
|             x = "{:}<-({:})".format(i + 1, ",".join(y)) | ||||
|             laystr.append(x) | ||||
|         return ( | ||||
|             string | ||||
|             + ", [{:}]".format(" | ".join(laystr)) | ||||
|             + ", {:}".format(self.genotype.tostr()) | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         nodes = [inputs] | ||||
|         for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)): | ||||
|             node_feature = sum( | ||||
|                 self.layers[_il](nodes[_ii]) | ||||
|                 for _il, _ii in zip(node_layers, node_innods) | ||||
|             ) | ||||
|             nodes.append(node_feature) | ||||
|         return nodes[-1] | ||||
|  | ||||
|  | ||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||
| class NASNetInferCell(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         genotype, | ||||
|         C_prev_prev, | ||||
|         C_prev, | ||||
|         C, | ||||
|         reduction, | ||||
|         reduction_prev, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetInferCell, self).__init__() | ||||
|         self.reduction = reduction | ||||
|         if reduction_prev: | ||||
|             self.preprocess0 = OPS["skip_connect"]( | ||||
|                 C_prev_prev, C, 2, affine, track_running_stats | ||||
|             ) | ||||
|         else: | ||||
|             self.preprocess0 = OPS["nor_conv_1x1"]( | ||||
|                 C_prev_prev, C, 1, affine, track_running_stats | ||||
|             ) | ||||
|         self.preprocess1 = OPS["nor_conv_1x1"]( | ||||
|             C_prev, C, 1, affine, track_running_stats | ||||
|         ) | ||||
|  | ||||
|         if not reduction: | ||||
|             nodes, concats = genotype["normal"], genotype["normal_concat"] | ||||
|         else: | ||||
|             nodes, concats = genotype["reduce"], genotype["reduce_concat"] | ||||
|         self._multiplier = len(concats) | ||||
|         self._concats = concats | ||||
|         self._steps = len(nodes) | ||||
|         self._nodes = nodes | ||||
|         self.edges = nn.ModuleDict() | ||||
|         for i, node in enumerate(nodes): | ||||
|             for in_node in node: | ||||
|                 name, j = in_node[0], in_node[1] | ||||
|                 stride = 2 if reduction and j < 2 else 1 | ||||
|                 node_str = "{:}<-{:}".format(i + 2, j) | ||||
|                 self.edges[node_str] = OPS[name]( | ||||
|                     C, C, stride, affine, track_running_stats | ||||
|                 ) | ||||
|  | ||||
|     # [TODO] to support drop_prob in this function.. | ||||
|     def forward(self, s0, s1, unused_drop_prob): | ||||
|         s0 = self.preprocess0(s0) | ||||
|         s1 = self.preprocess1(s1) | ||||
|  | ||||
|         states = [s0, s1] | ||||
|         for i, node in enumerate(self._nodes): | ||||
|             clist = [] | ||||
|             for in_node in node: | ||||
|                 name, j = in_node[0], in_node[1] | ||||
|                 node_str = "{:}<-{:}".format(i + 2, j) | ||||
|                 op = self.edges[node_str] | ||||
|                 clist.append(op(states[j])) | ||||
|             states.append(sum(clist)) | ||||
|         return torch.cat([states[x] for x in self._concats], dim=1) | ||||
|  | ||||
|  | ||||
| class AuxiliaryHeadCIFAR(nn.Module): | ||||
|     def __init__(self, C, num_classes): | ||||
|         """assuming input size 8x8""" | ||||
|         super(AuxiliaryHeadCIFAR, self).__init__() | ||||
|         self.features = nn.Sequential( | ||||
|             nn.ReLU(inplace=True), | ||||
|             nn.AvgPool2d( | ||||
|                 5, stride=3, padding=0, count_include_pad=False | ||||
|             ),  # image size = 2 x 2 | ||||
|             nn.Conv2d(C, 128, 1, bias=False), | ||||
|             nn.BatchNorm2d(128), | ||||
|             nn.ReLU(inplace=True), | ||||
|             nn.Conv2d(128, 768, 2, bias=False), | ||||
|             nn.BatchNorm2d(768), | ||||
|             nn.ReLU(inplace=True), | ||||
|         ) | ||||
|         self.classifier = nn.Linear(768, num_classes) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.features(x) | ||||
|         x = self.classifier(x.view(x.size(0), -1)) | ||||
|         return x | ||||
							
								
								
									
										118
									
								
								correlation/models/cell_infers/nasnet_cifar.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										118
									
								
								correlation/models/cell_infers/nasnet_cifar.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,118 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
|  | ||||
| from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetonCIFAR(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C, | ||||
|         N, | ||||
|         stem_multiplier, | ||||
|         num_classes, | ||||
|         genotype, | ||||
|         auxiliary, | ||||
|         affine=True, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(NASNetonCIFAR, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|         self.auxiliary_index = None | ||||
|         self.auxiliary_head = None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = InferCell( | ||||
|                 genotype, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = ( | ||||
|                 C_prev, | ||||
|                 cell._multiplier * C_curr, | ||||
|                 reduction, | ||||
|             ) | ||||
|             if reduction and C_curr == C * 4 and auxiliary: | ||||
|                 self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes) | ||||
|                 self.auxiliary_index = index | ||||
|         self._Layer = len(self.cells) | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.drop_path_prob = -1 | ||||
|  | ||||
|     def update_drop_path(self, drop_path_prob): | ||||
|         self.drop_path_prob = drop_path_prob | ||||
|  | ||||
|     def auxiliary_param(self): | ||||
|         if self.auxiliary_head is None: | ||||
|             return [] | ||||
|         else: | ||||
|             return list(self.auxiliary_head.parameters()) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         stem_feature, logits_aux = self.stem(inputs), None | ||||
|         cell_results = [stem_feature, stem_feature] | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob) | ||||
|             cell_results.append(cell_feature) | ||||
|             if ( | ||||
|                 self.auxiliary_index is not None | ||||
|                 and i == self.auxiliary_index | ||||
|                 and self.training | ||||
|             ): | ||||
|                 logits_aux = self.auxiliary_head(cell_results[-1]) | ||||
|         out = self.lastact(cell_results[-1]) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|         if logits_aux is None: | ||||
|             return out, logits | ||||
|         else: | ||||
|             return out, [logits, logits_aux] | ||||
							
								
								
									
										63
									
								
								correlation/models/cell_infers/tiny_network.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										63
									
								
								correlation/models/cell_infers/tiny_network.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,63 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .cells import InferCell | ||||
|  | ||||
|  | ||||
| # The macro structure for architectures in NAS-Bench-201 | ||||
| class TinyNetwork(nn.Module): | ||||
|     def __init__(self, C, N, genotype, num_classes): | ||||
|         super(TinyNetwork, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|  | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev = C | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2, True) | ||||
|             else: | ||||
|                 cell = InferCell(genotype, C_prev, C_curr, 1) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self._Layer = len(self.cells) | ||||
|  | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										553
									
								
								correlation/models/cell_operations.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										553
									
								
								correlation/models/cell_operations.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,553 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| __all__ = ["OPS", "RAW_OP_CLASSES", "ResNetBasicblock", "SearchSpaceNames"] | ||||
|  | ||||
| OPS = { | ||||
|     "none": lambda C_in, C_out, stride, affine, track_running_stats: Zero( | ||||
|         C_in, C_out, stride | ||||
|     ), | ||||
|     "avg_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING( | ||||
|         C_in, C_out, stride, "avg", affine, track_running_stats | ||||
|     ), | ||||
|     "max_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING( | ||||
|         C_in, C_out, stride, "max", affine, track_running_stats | ||||
|     ), | ||||
|     "nor_conv_7x7": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (7, 7), | ||||
|         (stride, stride), | ||||
|         (3, 3), | ||||
|         (1, 1), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "nor_conv_3x3": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (3, 3), | ||||
|         (stride, stride), | ||||
|         (1, 1), | ||||
|         (1, 1), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "nor_conv_1x1": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (1, 1), | ||||
|         (stride, stride), | ||||
|         (0, 0), | ||||
|         (1, 1), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "dua_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (3, 3), | ||||
|         (stride, stride), | ||||
|         (1, 1), | ||||
|         (1, 1), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "dua_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (5, 5), | ||||
|         (stride, stride), | ||||
|         (2, 2), | ||||
|         (1, 1), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "dil_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: SepConv( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (3, 3), | ||||
|         (stride, stride), | ||||
|         (2, 2), | ||||
|         (2, 2), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "dil_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: SepConv( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (5, 5), | ||||
|         (stride, stride), | ||||
|         (4, 4), | ||||
|         (2, 2), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "skip_connect": lambda C_in, C_out, stride, affine, track_running_stats: Identity() | ||||
|     if stride == 1 and C_in == C_out | ||||
|     else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats), | ||||
| } | ||||
|  | ||||
| CONNECT_NAS_BENCHMARK = ["none", "skip_connect", "nor_conv_3x3"] | ||||
| NAS_BENCH_201 = ["none", "skip_connect", "nor_conv_1x1", "nor_conv_3x3", "avg_pool_3x3"] | ||||
| DARTS_SPACE = [ | ||||
|     "none", | ||||
|     "skip_connect", | ||||
|     "dua_sepc_3x3", | ||||
|     "dua_sepc_5x5", | ||||
|     "dil_sepc_3x3", | ||||
|     "dil_sepc_5x5", | ||||
|     "avg_pool_3x3", | ||||
|     "max_pool_3x3", | ||||
| ] | ||||
|  | ||||
| SearchSpaceNames = { | ||||
|     "connect-nas": CONNECT_NAS_BENCHMARK, | ||||
|     "nats-bench": NAS_BENCH_201, | ||||
|     "nas-bench-201": NAS_BENCH_201, | ||||
|     "darts": DARTS_SPACE, | ||||
| } | ||||
|  | ||||
|  | ||||
| class ReLUConvBN(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C_in, | ||||
|         C_out, | ||||
|         kernel_size, | ||||
|         stride, | ||||
|         padding, | ||||
|         dilation, | ||||
|         affine, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(ReLUConvBN, self).__init__() | ||||
|         self.op = nn.Sequential( | ||||
|             nn.ReLU(inplace=False), | ||||
|             nn.Conv2d( | ||||
|                 C_in, | ||||
|                 C_out, | ||||
|                 kernel_size, | ||||
|                 stride=stride, | ||||
|                 padding=padding, | ||||
|                 dilation=dilation, | ||||
|                 bias=not affine, | ||||
|             ), | ||||
|             nn.BatchNorm2d( | ||||
|                 C_out, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.op(x) | ||||
|  | ||||
|  | ||||
| class SepConv(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C_in, | ||||
|         C_out, | ||||
|         kernel_size, | ||||
|         stride, | ||||
|         padding, | ||||
|         dilation, | ||||
|         affine, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(SepConv, self).__init__() | ||||
|         self.op = nn.Sequential( | ||||
|             nn.ReLU(inplace=False), | ||||
|             nn.Conv2d( | ||||
|                 C_in, | ||||
|                 C_in, | ||||
|                 kernel_size=kernel_size, | ||||
|                 stride=stride, | ||||
|                 padding=padding, | ||||
|                 dilation=dilation, | ||||
|                 groups=C_in, | ||||
|                 bias=False, | ||||
|             ), | ||||
|             nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=not affine), | ||||
|             nn.BatchNorm2d( | ||||
|                 C_out, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.op(x) | ||||
|  | ||||
|  | ||||
| class DualSepConv(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C_in, | ||||
|         C_out, | ||||
|         kernel_size, | ||||
|         stride, | ||||
|         padding, | ||||
|         dilation, | ||||
|         affine, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(DualSepConv, self).__init__() | ||||
|         self.op_a = SepConv( | ||||
|             C_in, | ||||
|             C_in, | ||||
|             kernel_size, | ||||
|             stride, | ||||
|             padding, | ||||
|             dilation, | ||||
|             affine, | ||||
|             track_running_stats, | ||||
|         ) | ||||
|         self.op_b = SepConv( | ||||
|             C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.op_a(x) | ||||
|         x = self.op_b(x) | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     def __init__(self, inplanes, planes, stride, affine=True, track_running_stats=True): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ReLUConvBN( | ||||
|             inplanes, planes, 3, stride, 1, 1, affine, track_running_stats | ||||
|         ) | ||||
|         self.conv_b = ReLUConvBN( | ||||
|             planes, planes, 3, 1, 1, 1, affine, track_running_stats | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = nn.Sequential( | ||||
|                 nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|                 nn.Conv2d( | ||||
|                     inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False | ||||
|                 ), | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ReLUConvBN( | ||||
|                 inplanes, planes, 1, 1, 0, 1, affine, track_running_stats | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.in_dim = inplanes | ||||
|         self.out_dim = planes | ||||
|         self.stride = stride | ||||
|         self.num_conv = 2 | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         string = "{name}(inC={in_dim}, outC={out_dim}, stride={stride})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|         return string | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         return residual + basicblock | ||||
|  | ||||
|  | ||||
| class POOLING(nn.Module): | ||||
|     def __init__( | ||||
|         self, C_in, C_out, stride, mode, affine=True, track_running_stats=True | ||||
|     ): | ||||
|         super(POOLING, self).__init__() | ||||
|         if C_in == C_out: | ||||
|             self.preprocess = None | ||||
|         else: | ||||
|             self.preprocess = ReLUConvBN( | ||||
|                 C_in, C_out, 1, 1, 0, 1, affine, track_running_stats | ||||
|             ) | ||||
|         if mode == "avg": | ||||
|             self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) | ||||
|         elif mode == "max": | ||||
|             self.op = nn.MaxPool2d(3, stride=stride, padding=1) | ||||
|         else: | ||||
|             raise ValueError("Invalid mode={:} in POOLING".format(mode)) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.preprocess: | ||||
|             x = self.preprocess(inputs) | ||||
|         else: | ||||
|             x = inputs | ||||
|         return self.op(x) | ||||
|  | ||||
|  | ||||
| class Identity(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(Identity, self).__init__() | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class Zero(nn.Module): | ||||
|     def __init__(self, C_in, C_out, stride): | ||||
|         super(Zero, self).__init__() | ||||
|         self.C_in = C_in | ||||
|         self.C_out = C_out | ||||
|         self.stride = stride | ||||
|         self.is_zero = True | ||||
|  | ||||
|     def forward(self, x): | ||||
|         if self.C_in == self.C_out: | ||||
|             if self.stride == 1: | ||||
|                 return x.mul(0.0) | ||||
|             else: | ||||
|                 return x[:, :, :: self.stride, :: self.stride].mul(0.0) | ||||
|         else: | ||||
|             shape = list(x.shape) | ||||
|             shape[1] = self.C_out | ||||
|             zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device) | ||||
|             return zeros | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__) | ||||
|  | ||||
|  | ||||
| class FactorizedReduce(nn.Module): | ||||
|     def __init__(self, C_in, C_out, stride, affine, track_running_stats): | ||||
|         super(FactorizedReduce, self).__init__() | ||||
|         self.stride = stride | ||||
|         self.C_in = C_in | ||||
|         self.C_out = C_out | ||||
|         self.relu = nn.ReLU(inplace=False) | ||||
|         if stride == 2: | ||||
|             # assert C_out % 2 == 0, 'C_out : {:}'.format(C_out) | ||||
|             C_outs = [C_out // 2, C_out - C_out // 2] | ||||
|             self.convs = nn.ModuleList() | ||||
|             for i in range(2): | ||||
|                 self.convs.append( | ||||
|                     nn.Conv2d( | ||||
|                         C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine | ||||
|                     ) | ||||
|                 ) | ||||
|             self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) | ||||
|         elif stride == 1: | ||||
|             self.conv = nn.Conv2d( | ||||
|                 C_in, C_out, 1, stride=stride, padding=0, bias=not affine | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("Invalid stride : {:}".format(stride)) | ||||
|         self.bn = nn.BatchNorm2d( | ||||
|             C_out, affine=affine, track_running_stats=track_running_stats | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         if self.stride == 2: | ||||
|             x = self.relu(x) | ||||
|             y = self.pad(x) | ||||
|             out = torch.cat([self.convs[0](x), self.convs[1](y[:, :, 1:, 1:])], dim=1) | ||||
|         else: | ||||
|             out = self.conv(x) | ||||
|         out = self.bn(out) | ||||
|         return out | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__) | ||||
|  | ||||
|  | ||||
| # Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019 | ||||
| class PartAwareOp(nn.Module): | ||||
|     def __init__(self, C_in, C_out, stride, part=4): | ||||
|         super().__init__() | ||||
|         self.part = 4 | ||||
|         self.hidden = C_in // 3 | ||||
|         self.avg_pool = nn.AdaptiveAvgPool2d(1) | ||||
|         self.local_conv_list = nn.ModuleList() | ||||
|         for i in range(self.part): | ||||
|             self.local_conv_list.append( | ||||
|                 nn.Sequential( | ||||
|                     nn.ReLU(), | ||||
|                     nn.Conv2d(C_in, self.hidden, 1), | ||||
|                     nn.BatchNorm2d(self.hidden, affine=True), | ||||
|                 ) | ||||
|             ) | ||||
|         self.W_K = nn.Linear(self.hidden, self.hidden) | ||||
|         self.W_Q = nn.Linear(self.hidden, self.hidden) | ||||
|  | ||||
|         if stride == 2: | ||||
|             self.last = FactorizedReduce(C_in + self.hidden, C_out, 2) | ||||
|         elif stride == 1: | ||||
|             self.last = FactorizedReduce(C_in + self.hidden, C_out, 1) | ||||
|         else: | ||||
|             raise ValueError("Invalid Stride : {:}".format(stride)) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         batch, C, H, W = x.size() | ||||
|         assert H >= self.part, "input size too small : {:} vs {:}".format( | ||||
|             x.shape, self.part | ||||
|         ) | ||||
|         IHs = [0] | ||||
|         for i in range(self.part): | ||||
|             IHs.append(min(H, int((i + 1) * (float(H) / self.part)))) | ||||
|         local_feat_list = [] | ||||
|         for i in range(self.part): | ||||
|             feature = x[:, :, IHs[i] : IHs[i + 1], :] | ||||
|             xfeax = self.avg_pool(feature) | ||||
|             xfea = self.local_conv_list[i](xfeax) | ||||
|             local_feat_list.append(xfea) | ||||
|         part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part) | ||||
|         part_feature = part_feature.transpose(1, 2).contiguous() | ||||
|         part_K = self.W_K(part_feature) | ||||
|         part_Q = self.W_Q(part_feature).transpose(1, 2).contiguous() | ||||
|         weight_att = torch.bmm(part_K, part_Q) | ||||
|         attention = torch.softmax(weight_att, dim=2) | ||||
|         aggreateF = torch.bmm(attention, part_feature).transpose(1, 2).contiguous() | ||||
|         features = [] | ||||
|         for i in range(self.part): | ||||
|             feature = aggreateF[:, :, i : i + 1].expand( | ||||
|                 batch, self.hidden, IHs[i + 1] - IHs[i] | ||||
|             ) | ||||
|             feature = feature.view(batch, self.hidden, IHs[i + 1] - IHs[i], 1) | ||||
|             features.append(feature) | ||||
|         features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W) | ||||
|         final_fea = torch.cat((x, features), dim=1) | ||||
|         outputs = self.last(final_fea) | ||||
|         return outputs | ||||
|  | ||||
|  | ||||
| def drop_path(x, drop_prob): | ||||
|     if drop_prob > 0.0: | ||||
|         keep_prob = 1.0 - drop_prob | ||||
|         mask = x.new_zeros(x.size(0), 1, 1, 1) | ||||
|         mask = mask.bernoulli_(keep_prob) | ||||
|         x = torch.div(x, keep_prob) | ||||
|         x.mul_(mask) | ||||
|     return x | ||||
|  | ||||
|  | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours | ||||
| class GDAS_Reduction_Cell(nn.Module): | ||||
|     def __init__( | ||||
|         self, C_prev_prev, C_prev, C, reduction_prev, affine, track_running_stats | ||||
|     ): | ||||
|         super(GDAS_Reduction_Cell, self).__init__() | ||||
|         if reduction_prev: | ||||
|             self.preprocess0 = FactorizedReduce( | ||||
|                 C_prev_prev, C, 2, affine, track_running_stats | ||||
|             ) | ||||
|         else: | ||||
|             self.preprocess0 = ReLUConvBN( | ||||
|                 C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats | ||||
|             ) | ||||
|         self.preprocess1 = ReLUConvBN( | ||||
|             C_prev, C, 1, 1, 0, 1, affine, track_running_stats | ||||
|         ) | ||||
|  | ||||
|         self.reduction = True | ||||
|         self.ops1 = nn.ModuleList( | ||||
|             [ | ||||
|                 nn.Sequential( | ||||
|                     nn.ReLU(inplace=False), | ||||
|                     nn.Conv2d( | ||||
|                         C, | ||||
|                         C, | ||||
|                         (1, 3), | ||||
|                         stride=(1, 2), | ||||
|                         padding=(0, 1), | ||||
|                         groups=8, | ||||
|                         bias=not affine, | ||||
|                     ), | ||||
|                     nn.Conv2d( | ||||
|                         C, | ||||
|                         C, | ||||
|                         (3, 1), | ||||
|                         stride=(2, 1), | ||||
|                         padding=(1, 0), | ||||
|                         groups=8, | ||||
|                         bias=not affine, | ||||
|                     ), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                     nn.ReLU(inplace=False), | ||||
|                     nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                 ), | ||||
|                 nn.Sequential( | ||||
|                     nn.ReLU(inplace=False), | ||||
|                     nn.Conv2d( | ||||
|                         C, | ||||
|                         C, | ||||
|                         (1, 3), | ||||
|                         stride=(1, 2), | ||||
|                         padding=(0, 1), | ||||
|                         groups=8, | ||||
|                         bias=not affine, | ||||
|                     ), | ||||
|                     nn.Conv2d( | ||||
|                         C, | ||||
|                         C, | ||||
|                         (3, 1), | ||||
|                         stride=(2, 1), | ||||
|                         padding=(1, 0), | ||||
|                         groups=8, | ||||
|                         bias=not affine, | ||||
|                     ), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                     nn.ReLU(inplace=False), | ||||
|                     nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                 ), | ||||
|             ] | ||||
|         ) | ||||
|  | ||||
|         self.ops2 = nn.ModuleList( | ||||
|             [ | ||||
|                 nn.Sequential( | ||||
|                     nn.MaxPool2d(3, stride=2, padding=1), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                 ), | ||||
|                 nn.Sequential( | ||||
|                     nn.MaxPool2d(3, stride=2, padding=1), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                 ), | ||||
|             ] | ||||
|         ) | ||||
|  | ||||
|     @property | ||||
|     def multiplier(self): | ||||
|         return 4 | ||||
|  | ||||
|     def forward(self, s0, s1, drop_prob=-1): | ||||
|         s0 = self.preprocess0(s0) | ||||
|         s1 = self.preprocess1(s1) | ||||
|  | ||||
|         X0 = self.ops1[0](s0) | ||||
|         X1 = self.ops1[1](s1) | ||||
|         if self.training and drop_prob > 0.0: | ||||
|             X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob) | ||||
|  | ||||
|         # X2 = self.ops2[0] (X0+X1) | ||||
|         X2 = self.ops2[0](s0) | ||||
|         X3 = self.ops2[1](s1) | ||||
|         if self.training and drop_prob > 0.0: | ||||
|             X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob) | ||||
|         return torch.cat([X0, X1, X2, X3], dim=1) | ||||
|  | ||||
|  | ||||
| # To manage the useful classes in this file. | ||||
| RAW_OP_CLASSES = {"gdas_reduction": GDAS_Reduction_Cell} | ||||
							
								
								
									
										33
									
								
								correlation/models/cell_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										33
									
								
								correlation/models/cell_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,33 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # The macro structure is defined in NAS-Bench-201 | ||||
| from .search_model_darts import TinyNetworkDarts | ||||
| from .search_model_gdas import TinyNetworkGDAS | ||||
| from .search_model_setn import TinyNetworkSETN | ||||
| from .search_model_enas import TinyNetworkENAS | ||||
| from .search_model_random import TinyNetworkRANDOM | ||||
| from .generic_model import GenericNAS201Model | ||||
| from .genotypes import Structure as CellStructure, architectures as CellArchitectures | ||||
|  | ||||
| # NASNet-based macro structure | ||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | ||||
| from .search_model_gdas_frc_nasnet import NASNetworkGDAS_FRC | ||||
| from .search_model_darts_nasnet import NASNetworkDARTS | ||||
|  | ||||
|  | ||||
| nas201_super_nets = { | ||||
|     "DARTS-V1": TinyNetworkDarts, | ||||
|     "DARTS-V2": TinyNetworkDarts, | ||||
|     "GDAS": TinyNetworkGDAS, | ||||
|     "SETN": TinyNetworkSETN, | ||||
|     "ENAS": TinyNetworkENAS, | ||||
|     "RANDOM": TinyNetworkRANDOM, | ||||
|     "generic": GenericNAS201Model, | ||||
| } | ||||
|  | ||||
| nasnet_super_nets = { | ||||
|     "GDAS": NASNetworkGDAS, | ||||
|     "GDAS_FRC": NASNetworkGDAS_FRC, | ||||
|     "DARTS": NASNetworkDARTS, | ||||
| } | ||||
							
								
								
									
										14
									
								
								correlation/models/cell_searchs/_test_module.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								correlation/models/cell_searchs/_test_module.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,14 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| from search_model_enas_utils import Controller | ||||
|  | ||||
|  | ||||
| def main(): | ||||
|     controller = Controller(6, 4) | ||||
|     predictions = controller() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     main() | ||||
							
								
								
									
										366
									
								
								correlation/models/cell_searchs/generic_model.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										366
									
								
								correlation/models/cell_searchs/generic_model.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,366 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 # | ||||
| ##################################################### | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import Text | ||||
| from torch.distributions.categorical import Categorical | ||||
|  | ||||
| from ..cell_operations import ResNetBasicblock, drop_path | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class Controller(nn.Module): | ||||
|     # we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py | ||||
|     def __init__( | ||||
|         self, | ||||
|         edge2index, | ||||
|         op_names, | ||||
|         max_nodes, | ||||
|         lstm_size=32, | ||||
|         lstm_num_layers=2, | ||||
|         tanh_constant=2.5, | ||||
|         temperature=5.0, | ||||
|     ): | ||||
|         super(Controller, self).__init__() | ||||
|         # assign the attributes | ||||
|         self.max_nodes = max_nodes | ||||
|         self.num_edge = len(edge2index) | ||||
|         self.edge2index = edge2index | ||||
|         self.num_ops = len(op_names) | ||||
|         self.op_names = op_names | ||||
|         self.lstm_size = lstm_size | ||||
|         self.lstm_N = lstm_num_layers | ||||
|         self.tanh_constant = tanh_constant | ||||
|         self.temperature = temperature | ||||
|         # create parameters | ||||
|         self.register_parameter( | ||||
|             "input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size)) | ||||
|         ) | ||||
|         self.w_lstm = nn.LSTM( | ||||
|             input_size=self.lstm_size, | ||||
|             hidden_size=self.lstm_size, | ||||
|             num_layers=self.lstm_N, | ||||
|         ) | ||||
|         self.w_embd = nn.Embedding(self.num_ops, self.lstm_size) | ||||
|         self.w_pred = nn.Linear(self.lstm_size, self.num_ops) | ||||
|  | ||||
|         nn.init.uniform_(self.input_vars, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_embd.weight, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_pred.weight, -0.1, 0.1) | ||||
|  | ||||
|     def convert_structure(self, _arch): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op_index = _arch[self.edge2index[node_str]] | ||||
|                 op_name = self.op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def forward(self): | ||||
|  | ||||
|         inputs, h0 = self.input_vars, None | ||||
|         log_probs, entropys, sampled_arch = [], [], [] | ||||
|         for iedge in range(self.num_edge): | ||||
|             outputs, h0 = self.w_lstm(inputs, h0) | ||||
|  | ||||
|             logits = self.w_pred(outputs) | ||||
|             logits = logits / self.temperature | ||||
|             logits = self.tanh_constant * torch.tanh(logits) | ||||
|             # distribution | ||||
|             op_distribution = Categorical(logits=logits) | ||||
|             op_index = op_distribution.sample() | ||||
|             sampled_arch.append(op_index.item()) | ||||
|  | ||||
|             op_log_prob = op_distribution.log_prob(op_index) | ||||
|             log_probs.append(op_log_prob.view(-1)) | ||||
|             op_entropy = op_distribution.entropy() | ||||
|             entropys.append(op_entropy.view(-1)) | ||||
|  | ||||
|             # obtain the input embedding for the next step | ||||
|             inputs = self.w_embd(op_index) | ||||
|         return ( | ||||
|             torch.sum(torch.cat(log_probs)), | ||||
|             torch.sum(torch.cat(entropys)), | ||||
|             self.convert_structure(sampled_arch), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class GenericNAS201Model(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(GenericNAS201Model, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._max_nodes = max_nodes | ||||
|         self._stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self._cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self._cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self._op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self._cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential( | ||||
|             nn.BatchNorm2d( | ||||
|                 C_prev, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|             nn.ReLU(inplace=True), | ||||
|         ) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self._num_edge = num_edge | ||||
|         # algorithm related | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self._mode = None | ||||
|         self.dynamic_cell = None | ||||
|         self._tau = None | ||||
|         self._algo = None | ||||
|         self._drop_path = None | ||||
|         self.verbose = False | ||||
|  | ||||
|     def set_algo(self, algo: Text): | ||||
|         # used for searching | ||||
|         assert self._algo is None, "This functioin can only be called once." | ||||
|         self._algo = algo | ||||
|         if algo == "enas": | ||||
|             self.controller = Controller( | ||||
|                 self.edge2index, self._op_names, self._max_nodes | ||||
|             ) | ||||
|         else: | ||||
|             self.arch_parameters = nn.Parameter( | ||||
|                 1e-3 * torch.randn(self._num_edge, len(self._op_names)) | ||||
|             ) | ||||
|             if algo == "gdas": | ||||
|                 self._tau = 10 | ||||
|  | ||||
|     def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|         assert mode in ["gdas", "enas", "urs", "joint", "select", "dynamic"] | ||||
|         self._mode = mode | ||||
|         if mode == "dynamic": | ||||
|             self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|         else: | ||||
|             self.dynamic_cell = None | ||||
|  | ||||
|     def set_drop_path(self, progress, drop_path_rate): | ||||
|         if drop_path_rate is None: | ||||
|             self._drop_path = None | ||||
|         elif progress is None: | ||||
|             self._drop_path = drop_path_rate | ||||
|         else: | ||||
|             self._drop_path = progress * drop_path_rate | ||||
|  | ||||
|     @property | ||||
|     def mode(self): | ||||
|         return self._mode | ||||
|  | ||||
|     @property | ||||
|     def drop_path(self): | ||||
|         return self._drop_path | ||||
|  | ||||
|     @property | ||||
|     def weights(self): | ||||
|         xlist = list(self._stem.parameters()) | ||||
|         xlist += list(self._cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) | ||||
|         xlist += list(self.global_pooling.parameters()) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self._tau = tau | ||||
|  | ||||
|     @property | ||||
|     def tau(self): | ||||
|         return self._tau | ||||
|  | ||||
|     @property | ||||
|     def alphas(self): | ||||
|         if self._algo == "enas": | ||||
|             return list(self.controller.parameters()) | ||||
|         else: | ||||
|             return [self.arch_parameters] | ||||
|  | ||||
|     @property | ||||
|     def message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self._cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self._cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             if self._algo == "enas": | ||||
|                 return "w_pred :\n{:}".format(self.controller.w_pred.weight) | ||||
|             else: | ||||
|                 return "arch-parameters :\n{:}".format( | ||||
|                     nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|                 ) | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     @property | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self._max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self._op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def dync_genotype(self, use_random=False): | ||||
|         genotypes = [] | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         for i in range(1, self._max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if use_random: | ||||
|                     op_name = random.choice(self._op_names) | ||||
|                 else: | ||||
|                     weights = alphas_cpu[self.edge2index[node_str]] | ||||
|                     op_index = torch.multinomial(weights, 1).item() | ||||
|                     op_name = self._op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def get_log_prob(self, arch): | ||||
|         with torch.no_grad(): | ||||
|             logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|         select_logits = [] | ||||
|         for i, node_info in enumerate(arch.nodes): | ||||
|             for op, xin in node_info: | ||||
|                 node_str = "{:}<-{:}".format(i + 1, xin) | ||||
|                 op_index = self._op_names.index(op) | ||||
|                 select_logits.append(logits[self.edge2index[node_str], op_index]) | ||||
|         return sum(select_logits).item() | ||||
|  | ||||
|     def return_topK(self, K, use_random=False): | ||||
|         archs = Structure.gen_all(self._op_names, self._max_nodes, False) | ||||
|         pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|         if K < 0 or K >= len(archs): | ||||
|             K = len(archs) | ||||
|         if use_random: | ||||
|             return random.sample(archs, K) | ||||
|         else: | ||||
|             sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|             return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|             return return_pairs | ||||
|  | ||||
|     def normalize_archp(self): | ||||
|         if self.mode == "gdas": | ||||
|             while True: | ||||
|                 gumbels = -torch.empty_like(self.arch_parameters).exponential_().log() | ||||
|                 logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau | ||||
|                 probs = nn.functional.softmax(logits, dim=1) | ||||
|                 index = probs.max(-1, keepdim=True)[1] | ||||
|                 one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|                 hardwts = one_h - probs.detach() + probs | ||||
|                 if ( | ||||
|                     (torch.isinf(gumbels).any()) | ||||
|                     or (torch.isinf(probs).any()) | ||||
|                     or (torch.isnan(probs).any()) | ||||
|                 ): | ||||
|                     continue | ||||
|                 else: | ||||
|                     break | ||||
|             with torch.no_grad(): | ||||
|                 hardwts_cpu = hardwts.detach().cpu() | ||||
|             return hardwts, hardwts_cpu, index, "GUMBEL" | ||||
|         else: | ||||
|             alphas = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|             index = alphas.max(-1, keepdim=True)[1] | ||||
|             with torch.no_grad(): | ||||
|                 alphas_cpu = alphas.detach().cpu() | ||||
|             return alphas, alphas_cpu, index, "SOFTMAX" | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         alphas, alphas_cpu, index, verbose_str = self.normalize_archp() | ||||
|         feature = self._stem(inputs) | ||||
|         for i, cell in enumerate(self._cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 if self.mode == "urs": | ||||
|                     feature = cell.forward_urs(feature) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_urs" | ||||
|                 elif self.mode == "select": | ||||
|                     feature = cell.forward_select(feature, alphas_cpu) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_select" | ||||
|                 elif self.mode == "joint": | ||||
|                     feature = cell.forward_joint(feature, alphas) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_joint" | ||||
|                 elif self.mode == "dynamic": | ||||
|                     feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_dynamic" | ||||
|                 elif self.mode == "gdas": | ||||
|                     feature = cell.forward_gdas(feature, alphas, index) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_gdas" | ||||
|                 elif self.mode == "gdas_v1": | ||||
|                     feature = cell.forward_gdas_v1(feature, alphas, index) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_gdas_v1" | ||||
|                 else: | ||||
|                     raise ValueError("invalid mode={:}".format(self.mode)) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|             if self.drop_path is not None: | ||||
|                 feature = drop_path(feature, self.drop_path) | ||||
|         if self.verbose and random.random() < 0.001: | ||||
|             print(verbose_str) | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|         return out, logits | ||||
							
								
								
									
										274
									
								
								correlation/models/cell_searchs/genotypes.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										274
									
								
								correlation/models/cell_searchs/genotypes.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,274 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from copy import deepcopy | ||||
|  | ||||
|  | ||||
| def get_combination(space, num): | ||||
|     combs = [] | ||||
|     for i in range(num): | ||||
|         if i == 0: | ||||
|             for func in space: | ||||
|                 combs.append([(func, i)]) | ||||
|         else: | ||||
|             new_combs = [] | ||||
|             for string in combs: | ||||
|                 for func in space: | ||||
|                     xstring = string + [(func, i)] | ||||
|                     new_combs.append(xstring) | ||||
|             combs = new_combs | ||||
|     return combs | ||||
|  | ||||
|  | ||||
| class Structure: | ||||
|     def __init__(self, genotype): | ||||
|         assert isinstance(genotype, list) or isinstance( | ||||
|             genotype, tuple | ||||
|         ), "invalid class of genotype : {:}".format(type(genotype)) | ||||
|         self.node_num = len(genotype) + 1 | ||||
|         self.nodes = [] | ||||
|         self.node_N = [] | ||||
|         for idx, node_info in enumerate(genotype): | ||||
|             assert isinstance(node_info, list) or isinstance( | ||||
|                 node_info, tuple | ||||
|             ), "invalid class of node_info : {:}".format(type(node_info)) | ||||
|             assert len(node_info) >= 1, "invalid length : {:}".format(len(node_info)) | ||||
|             for node_in in node_info: | ||||
|                 assert isinstance(node_in, list) or isinstance( | ||||
|                     node_in, tuple | ||||
|                 ), "invalid class of in-node : {:}".format(type(node_in)) | ||||
|                 assert ( | ||||
|                     len(node_in) == 2 and node_in[1] <= idx | ||||
|                 ), "invalid in-node : {:}".format(node_in) | ||||
|             self.node_N.append(len(node_info)) | ||||
|             self.nodes.append(tuple(deepcopy(node_info))) | ||||
|  | ||||
|     def tolist(self, remove_str): | ||||
|         # convert this class to the list, if remove_str is 'none', then remove the 'none' operation. | ||||
|         # note that we re-order the input node in this function | ||||
|         # return the-genotype-list and success [if unsuccess, it is not a connectivity] | ||||
|         genotypes = [] | ||||
|         for node_info in self.nodes: | ||||
|             node_info = list(node_info) | ||||
|             node_info = sorted(node_info, key=lambda x: (x[1], x[0])) | ||||
|             node_info = tuple(filter(lambda x: x[0] != remove_str, node_info)) | ||||
|             if len(node_info) == 0: | ||||
|                 return None, False | ||||
|             genotypes.append(node_info) | ||||
|         return genotypes, True | ||||
|  | ||||
|     def node(self, index): | ||||
|         assert index > 0 and index <= len(self), "invalid index={:} < {:}".format( | ||||
|             index, len(self) | ||||
|         ) | ||||
|         return self.nodes[index] | ||||
|  | ||||
|     def tostr(self): | ||||
|         strings = [] | ||||
|         for node_info in self.nodes: | ||||
|             string = "|".join([x[0] + "~{:}".format(x[1]) for x in node_info]) | ||||
|             string = "|{:}|".format(string) | ||||
|             strings.append(string) | ||||
|         return "+".join(strings) | ||||
|  | ||||
|     def check_valid(self): | ||||
|         nodes = {0: True} | ||||
|         for i, node_info in enumerate(self.nodes): | ||||
|             sums = [] | ||||
|             for op, xin in node_info: | ||||
|                 if op == "none" or nodes[xin] is False: | ||||
|                     x = False | ||||
|                 else: | ||||
|                     x = True | ||||
|                 sums.append(x) | ||||
|             nodes[i + 1] = sum(sums) > 0 | ||||
|         return nodes[len(self.nodes)] | ||||
|  | ||||
|     def to_unique_str(self, consider_zero=False): | ||||
|         # this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation | ||||
|         # two operations are special, i.e., none and skip_connect | ||||
|         nodes = {0: "0"} | ||||
|         for i_node, node_info in enumerate(self.nodes): | ||||
|             cur_node = [] | ||||
|             for op, xin in node_info: | ||||
|                 if consider_zero is None: | ||||
|                     x = "(" + nodes[xin] + ")" + "@{:}".format(op) | ||||
|                 elif consider_zero: | ||||
|                     if op == "none" or nodes[xin] == "#": | ||||
|                         x = "#"  # zero | ||||
|                     elif op == "skip_connect": | ||||
|                         x = nodes[xin] | ||||
|                     else: | ||||
|                         x = "(" + nodes[xin] + ")" + "@{:}".format(op) | ||||
|                 else: | ||||
|                     if op == "skip_connect": | ||||
|                         x = nodes[xin] | ||||
|                     else: | ||||
|                         x = "(" + nodes[xin] + ")" + "@{:}".format(op) | ||||
|                 cur_node.append(x) | ||||
|             nodes[i_node + 1] = "+".join(sorted(cur_node)) | ||||
|         return nodes[len(self.nodes)] | ||||
|  | ||||
|     def check_valid_op(self, op_names): | ||||
|         for node_info in self.nodes: | ||||
|             for inode_edge in node_info: | ||||
|                 # assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0]) | ||||
|                 if inode_edge[0] not in op_names: | ||||
|                     return False | ||||
|         return True | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({node_num} nodes with {node_info})".format( | ||||
|             name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.nodes) + 1 | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         return self.nodes[index] | ||||
|  | ||||
|     @staticmethod | ||||
|     def str2structure(xstr): | ||||
|         if isinstance(xstr, Structure): | ||||
|             return xstr | ||||
|         assert isinstance(xstr, str), "must take string (not {:}) as input".format( | ||||
|             type(xstr) | ||||
|         ) | ||||
|         nodestrs = xstr.split("+") | ||||
|         genotypes = [] | ||||
|         for i, node_str in enumerate(nodestrs): | ||||
|             inputs = list(filter(lambda x: x != "", node_str.split("|"))) | ||||
|             for xinput in inputs: | ||||
|                 assert len(xinput.split("~")) == 2, "invalid input length : {:}".format( | ||||
|                     xinput | ||||
|                 ) | ||||
|             inputs = (xi.split("~") for xi in inputs) | ||||
|             input_infos = tuple((op, int(IDX)) for (op, IDX) in inputs) | ||||
|             genotypes.append(input_infos) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     @staticmethod | ||||
|     def str2fullstructure(xstr, default_name="none"): | ||||
|         assert isinstance(xstr, str), "must take string (not {:}) as input".format( | ||||
|             type(xstr) | ||||
|         ) | ||||
|         nodestrs = xstr.split("+") | ||||
|         genotypes = [] | ||||
|         for i, node_str in enumerate(nodestrs): | ||||
|             inputs = list(filter(lambda x: x != "", node_str.split("|"))) | ||||
|             for xinput in inputs: | ||||
|                 assert len(xinput.split("~")) == 2, "invalid input length : {:}".format( | ||||
|                     xinput | ||||
|                 ) | ||||
|             inputs = (xi.split("~") for xi in inputs) | ||||
|             input_infos = list((op, int(IDX)) for (op, IDX) in inputs) | ||||
|             all_in_nodes = list(x[1] for x in input_infos) | ||||
|             for j in range(i): | ||||
|                 if j not in all_in_nodes: | ||||
|                     input_infos.append((default_name, j)) | ||||
|             node_info = sorted(input_infos, key=lambda x: (x[1], x[0])) | ||||
|             genotypes.append(tuple(node_info)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     @staticmethod | ||||
|     def gen_all(search_space, num, return_ori): | ||||
|         assert isinstance(search_space, list) or isinstance( | ||||
|             search_space, tuple | ||||
|         ), "invalid class of search-space : {:}".format(type(search_space)) | ||||
|         assert ( | ||||
|             num >= 2 | ||||
|         ), "There should be at least two nodes in a neural cell instead of {:}".format( | ||||
|             num | ||||
|         ) | ||||
|         all_archs = get_combination(search_space, 1) | ||||
|         for i, arch in enumerate(all_archs): | ||||
|             all_archs[i] = [tuple(arch)] | ||||
|  | ||||
|         for inode in range(2, num): | ||||
|             cur_nodes = get_combination(search_space, inode) | ||||
|             new_all_archs = [] | ||||
|             for previous_arch in all_archs: | ||||
|                 for cur_node in cur_nodes: | ||||
|                     new_all_archs.append(previous_arch + [tuple(cur_node)]) | ||||
|             all_archs = new_all_archs | ||||
|         if return_ori: | ||||
|             return all_archs | ||||
|         else: | ||||
|             return [Structure(x) for x in all_archs] | ||||
|  | ||||
|  | ||||
| ResNet_CODE = Structure( | ||||
|     [ | ||||
|         (("nor_conv_3x3", 0),),  # node-1 | ||||
|         (("nor_conv_3x3", 1),),  # node-2 | ||||
|         (("skip_connect", 0), ("skip_connect", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllConv3x3_CODE = Structure( | ||||
|     [ | ||||
|         (("nor_conv_3x3", 0),),  # node-1 | ||||
|         (("nor_conv_3x3", 0), ("nor_conv_3x3", 1)),  # node-2 | ||||
|         (("nor_conv_3x3", 0), ("nor_conv_3x3", 1), ("nor_conv_3x3", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllFull_CODE = Structure( | ||||
|     [ | ||||
|         ( | ||||
|             ("skip_connect", 0), | ||||
|             ("nor_conv_1x1", 0), | ||||
|             ("nor_conv_3x3", 0), | ||||
|             ("avg_pool_3x3", 0), | ||||
|         ),  # node-1 | ||||
|         ( | ||||
|             ("skip_connect", 0), | ||||
|             ("nor_conv_1x1", 0), | ||||
|             ("nor_conv_3x3", 0), | ||||
|             ("avg_pool_3x3", 0), | ||||
|             ("skip_connect", 1), | ||||
|             ("nor_conv_1x1", 1), | ||||
|             ("nor_conv_3x3", 1), | ||||
|             ("avg_pool_3x3", 1), | ||||
|         ),  # node-2 | ||||
|         ( | ||||
|             ("skip_connect", 0), | ||||
|             ("nor_conv_1x1", 0), | ||||
|             ("nor_conv_3x3", 0), | ||||
|             ("avg_pool_3x3", 0), | ||||
|             ("skip_connect", 1), | ||||
|             ("nor_conv_1x1", 1), | ||||
|             ("nor_conv_3x3", 1), | ||||
|             ("avg_pool_3x3", 1), | ||||
|             ("skip_connect", 2), | ||||
|             ("nor_conv_1x1", 2), | ||||
|             ("nor_conv_3x3", 2), | ||||
|             ("avg_pool_3x3", 2), | ||||
|         ), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllConv1x1_CODE = Structure( | ||||
|     [ | ||||
|         (("nor_conv_1x1", 0),),  # node-1 | ||||
|         (("nor_conv_1x1", 0), ("nor_conv_1x1", 1)),  # node-2 | ||||
|         (("nor_conv_1x1", 0), ("nor_conv_1x1", 1), ("nor_conv_1x1", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllIdentity_CODE = Structure( | ||||
|     [ | ||||
|         (("skip_connect", 0),),  # node-1 | ||||
|         (("skip_connect", 0), ("skip_connect", 1)),  # node-2 | ||||
|         (("skip_connect", 0), ("skip_connect", 1), ("skip_connect", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| architectures = { | ||||
|     "resnet": ResNet_CODE, | ||||
|     "all_c3x3": AllConv3x3_CODE, | ||||
|     "all_c1x1": AllConv1x1_CODE, | ||||
|     "all_idnt": AllIdentity_CODE, | ||||
|     "all_full": AllFull_CODE, | ||||
| } | ||||
							
								
								
									
										267
									
								
								correlation/models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										267
									
								
								correlation/models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,267 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, random, torch | ||||
| import warnings | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| # This module is used for NAS-Bench-201, represents a small search space with a complete DAG | ||||
| class NAS201SearchCell(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C_in, | ||||
|         C_out, | ||||
|         stride, | ||||
|         max_nodes, | ||||
|         op_names, | ||||
|         affine=False, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(NAS201SearchCell, self).__init__() | ||||
|  | ||||
|         self.op_names = deepcopy(op_names) | ||||
|         self.edges = nn.ModuleDict() | ||||
|         self.max_nodes = max_nodes | ||||
|         self.in_dim = C_in | ||||
|         self.out_dim = C_out | ||||
|         for i in range(1, max_nodes): | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if j == 0: | ||||
|                     xlists = [ | ||||
|                         OPS[op_name](C_in, C_out, stride, affine, track_running_stats) | ||||
|                         for op_name in op_names | ||||
|                     ] | ||||
|                 else: | ||||
|                     xlists = [ | ||||
|                         OPS[op_name](C_in, C_out, 1, affine, track_running_stats) | ||||
|                         for op_name in op_names | ||||
|                     ] | ||||
|                 self.edges[node_str] = nn.ModuleList(xlists) | ||||
|         self.edge_keys = sorted(list(self.edges.keys())) | ||||
|         self.edge2index = {key: i for i, key in enumerate(self.edge_keys)} | ||||
|         self.num_edges = len(self.edges) | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         string = "info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}".format( | ||||
|             **self.__dict__ | ||||
|         ) | ||||
|         return string | ||||
|  | ||||
|     def forward(self, inputs, weightss): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 inter_nodes.append( | ||||
|                     sum( | ||||
|                         layer(nodes[j]) * w | ||||
|                         for layer, w in zip(self.edges[node_str], weights) | ||||
|                     ) | ||||
|                 ) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # GDAS | ||||
|     def forward_gdas(self, inputs, hardwts, index): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = hardwts[self.edge2index[node_str]] | ||||
|                 argmaxs = index[self.edge2index[node_str]].item() | ||||
|                 weigsum = sum( | ||||
|                     weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] | ||||
|                     for _ie, edge in enumerate(self.edges[node_str]) | ||||
|                 ) | ||||
|                 inter_nodes.append(weigsum) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # GDAS Variant: https://github.com/D-X-Y/AutoDL-Projects/issues/119 | ||||
|     def forward_gdas_v1(self, inputs, hardwts, index): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = hardwts[self.edge2index[node_str]] | ||||
|                 argmaxs = index[self.edge2index[node_str]].item() | ||||
|                 weigsum = weights[argmaxs] * self.edges[node_str](nodes[j]) | ||||
|                 inter_nodes.append(weigsum) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # joint | ||||
|     def forward_joint(self, inputs, weightss): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 # aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel() | ||||
|                 aggregation = sum( | ||||
|                     layer(nodes[j]) * w | ||||
|                     for layer, w in zip(self.edges[node_str], weights) | ||||
|                 ) | ||||
|                 inter_nodes.append(aggregation) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # uniform random sampling per iteration, SETN | ||||
|     def forward_urs(self, inputs): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             while True:  # to avoid select zero for all ops | ||||
|                 sops, has_non_zero = [], False | ||||
|                 for j in range(i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     candidates = self.edges[node_str] | ||||
|                     select_op = random.choice(candidates) | ||||
|                     sops.append(select_op) | ||||
|                     if not hasattr(select_op, "is_zero") or select_op.is_zero is False: | ||||
|                         has_non_zero = True | ||||
|                 if has_non_zero: | ||||
|                     break | ||||
|             inter_nodes = [] | ||||
|             for j, select_op in enumerate(sops): | ||||
|                 inter_nodes.append(select_op(nodes[j])) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # select the argmax | ||||
|     def forward_select(self, inputs, weightss): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 inter_nodes.append( | ||||
|                     self.edges[node_str][weights.argmax().item()](nodes[j]) | ||||
|                 ) | ||||
|                 # inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # forward with a specific structure | ||||
|     def forward_dynamic(self, inputs, structure): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             cur_op_node = structure.nodes[i - 1] | ||||
|             inter_nodes = [] | ||||
|             for op_name, j in cur_op_node: | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op_index = self.op_names.index(op_name) | ||||
|                 inter_nodes.append(self.edges[node_str][op_index](nodes[j])) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|  | ||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||
|  | ||||
|  | ||||
| class MixedOp(nn.Module): | ||||
|     def __init__(self, space, C, stride, affine, track_running_stats): | ||||
|         super(MixedOp, self).__init__() | ||||
|         self._ops = nn.ModuleList() | ||||
|         for primitive in space: | ||||
|             op = OPS[primitive](C, C, stride, affine, track_running_stats) | ||||
|             self._ops.append(op) | ||||
|  | ||||
|     def forward_gdas(self, x, weights, index): | ||||
|         return self._ops[index](x) * weights[index] | ||||
|  | ||||
|     def forward_darts(self, x, weights): | ||||
|         return sum(w * op(x) for w, op in zip(weights, self._ops)) | ||||
|  | ||||
|  | ||||
| class NASNetSearchCell(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         space, | ||||
|         steps, | ||||
|         multiplier, | ||||
|         C_prev_prev, | ||||
|         C_prev, | ||||
|         C, | ||||
|         reduction, | ||||
|         reduction_prev, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetSearchCell, self).__init__() | ||||
|         self.reduction = reduction | ||||
|         self.op_names = deepcopy(space) | ||||
|         if reduction_prev: | ||||
|             self.preprocess0 = OPS["skip_connect"]( | ||||
|                 C_prev_prev, C, 2, affine, track_running_stats | ||||
|             ) | ||||
|         else: | ||||
|             self.preprocess0 = OPS["nor_conv_1x1"]( | ||||
|                 C_prev_prev, C, 1, affine, track_running_stats | ||||
|             ) | ||||
|         self.preprocess1 = OPS["nor_conv_1x1"]( | ||||
|             C_prev, C, 1, affine, track_running_stats | ||||
|         ) | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|  | ||||
|         self._ops = nn.ModuleList() | ||||
|         self.edges = nn.ModuleDict() | ||||
|         for i in range(self._steps): | ||||
|             for j in range(2 + i): | ||||
|                 node_str = "{:}<-{:}".format( | ||||
|                     i, j | ||||
|                 )  # indicate the edge from node-(j) to node-(i+2) | ||||
|                 stride = 2 if reduction and j < 2 else 1 | ||||
|                 op = MixedOp(space, C, stride, affine, track_running_stats) | ||||
|                 self.edges[node_str] = op | ||||
|         self.edge_keys = sorted(list(self.edges.keys())) | ||||
|         self.edge2index = {key: i for i, key in enumerate(self.edge_keys)} | ||||
|         self.num_edges = len(self.edges) | ||||
|  | ||||
|     @property | ||||
|     def multiplier(self): | ||||
|         return self._multiplier | ||||
|  | ||||
|     def forward_gdas(self, s0, s1, weightss, indexs): | ||||
|         s0 = self.preprocess0(s0) | ||||
|         s1 = self.preprocess1(s1) | ||||
|  | ||||
|         states = [s0, s1] | ||||
|         for i in range(self._steps): | ||||
|             clist = [] | ||||
|             for j, h in enumerate(states): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op = self.edges[node_str] | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 index = indexs[self.edge2index[node_str]].item() | ||||
|                 clist.append(op.forward_gdas(h, weights, index)) | ||||
|             states.append(sum(clist)) | ||||
|  | ||||
|         return torch.cat(states[-self._multiplier :], dim=1) | ||||
|  | ||||
|     def forward_darts(self, s0, s1, weightss): | ||||
|         s0 = self.preprocess0(s0) | ||||
|         s1 = self.preprocess1(s1) | ||||
|  | ||||
|         states = [s0, s1] | ||||
|         for i in range(self._steps): | ||||
|             clist = [] | ||||
|             for j, h in enumerate(states): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op = self.edges[node_str] | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 clist.append(op.forward_darts(h, weights)) | ||||
|             states.append(sum(clist)) | ||||
|  | ||||
|         return torch.cat(states[-self._multiplier :], dim=1) | ||||
							
								
								
									
										122
									
								
								correlation/models/cell_searchs/search_model_darts.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										122
									
								
								correlation/models/cell_searchs/search_model_darts.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,122 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkDarts(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkDarts, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             return "arch-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         alphas = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell(feature, alphas) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										178
									
								
								correlation/models/cell_searchs/search_model_darts_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										178
									
								
								correlation/models/cell_searchs/search_model_darts_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,178 @@ | ||||
| #################### | ||||
| # DARTS, ICLR 2019 # | ||||
| #################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import List, Text, Dict | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkDARTS(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C: int, | ||||
|         N: int, | ||||
|         steps: int, | ||||
|         multiplier: int, | ||||
|         stem_multiplier: int, | ||||
|         num_classes: int, | ||||
|         search_space: List[Text], | ||||
|         affine: bool, | ||||
|         track_running_stats: bool, | ||||
|     ): | ||||
|         super(NASNetworkDARTS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = SearchCell( | ||||
|                 search_space, | ||||
|                 steps, | ||||
|                 multiplier, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_normal_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.arch_reduce_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|  | ||||
|     def get_weights(self) -> List[torch.nn.Parameter]: | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def get_alphas(self) -> List[torch.nn.Parameter]: | ||||
|         return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|     def show_alphas(self) -> Text: | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|             B = "arch-reduce-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}\n{:}".format(A, B) | ||||
|  | ||||
|     def get_message(self) -> Text: | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self) -> Text: | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self) -> Dict[Text, List]: | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 # (TODO) xuanyidong: | ||||
|                 # Here the selected two edges might come from the same input node. | ||||
|                 # And this case could be a problem that two edges will collapse into a single one | ||||
|                 # due to our assumption -- at most one edge from an input node during evaluation. | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|             gene_reduce = _parse( | ||||
|                 torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|             "reduce": gene_reduce, | ||||
|             "reduce_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1) | ||||
|         reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1) | ||||
|  | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if cell.reduction: | ||||
|                 ww = reduce_w | ||||
|             else: | ||||
|                 ww = normal_w | ||||
|             s0, s1 = s1, cell.forward_darts(s0, s1, ww) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										114
									
								
								correlation/models/cell_searchs/search_model_enas.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										114
									
								
								correlation/models/cell_searchs/search_model_enas.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,114 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
| from .search_model_enas_utils import Controller | ||||
|  | ||||
|  | ||||
| class TinyNetworkENAS(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkENAS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         # to maintain the sampled architecture | ||||
|         self.sampled_arch = None | ||||
|  | ||||
|     def update_arch(self, _arch): | ||||
|         if _arch is None: | ||||
|             self.sampled_arch = None | ||||
|         elif isinstance(_arch, Structure): | ||||
|             self.sampled_arch = _arch | ||||
|         elif isinstance(_arch, (list, tuple)): | ||||
|             genotypes = [] | ||||
|             for i in range(1, self.max_nodes): | ||||
|                 xlist = [] | ||||
|                 for j in range(i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     op_index = _arch[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[op_index] | ||||
|                     xlist.append((op_name, j)) | ||||
|                 genotypes.append(tuple(xlist)) | ||||
|             self.sampled_arch = Structure(genotypes) | ||||
|         else: | ||||
|             raise ValueError("invalid type of input architecture : {:}".format(_arch)) | ||||
|         return self.sampled_arch | ||||
|  | ||||
|     def create_controller(self): | ||||
|         return Controller(len(self.edge2index), len(self.op_names)) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell.forward_dynamic(feature, self.sampled_arch) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										74
									
								
								correlation/models/cell_searchs/search_model_enas_utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								correlation/models/cell_searchs/search_model_enas_utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,74 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from torch.distributions.categorical import Categorical | ||||
|  | ||||
|  | ||||
| class Controller(nn.Module): | ||||
|     # we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py | ||||
|     def __init__( | ||||
|         self, | ||||
|         num_edge, | ||||
|         num_ops, | ||||
|         lstm_size=32, | ||||
|         lstm_num_layers=2, | ||||
|         tanh_constant=2.5, | ||||
|         temperature=5.0, | ||||
|     ): | ||||
|         super(Controller, self).__init__() | ||||
|         # assign the attributes | ||||
|         self.num_edge = num_edge | ||||
|         self.num_ops = num_ops | ||||
|         self.lstm_size = lstm_size | ||||
|         self.lstm_N = lstm_num_layers | ||||
|         self.tanh_constant = tanh_constant | ||||
|         self.temperature = temperature | ||||
|         # create parameters | ||||
|         self.register_parameter( | ||||
|             "input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size)) | ||||
|         ) | ||||
|         self.w_lstm = nn.LSTM( | ||||
|             input_size=self.lstm_size, | ||||
|             hidden_size=self.lstm_size, | ||||
|             num_layers=self.lstm_N, | ||||
|         ) | ||||
|         self.w_embd = nn.Embedding(self.num_ops, self.lstm_size) | ||||
|         self.w_pred = nn.Linear(self.lstm_size, self.num_ops) | ||||
|  | ||||
|         nn.init.uniform_(self.input_vars, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_embd.weight, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_pred.weight, -0.1, 0.1) | ||||
|  | ||||
|     def forward(self): | ||||
|  | ||||
|         inputs, h0 = self.input_vars, None | ||||
|         log_probs, entropys, sampled_arch = [], [], [] | ||||
|         for iedge in range(self.num_edge): | ||||
|             outputs, h0 = self.w_lstm(inputs, h0) | ||||
|  | ||||
|             logits = self.w_pred(outputs) | ||||
|             logits = logits / self.temperature | ||||
|             logits = self.tanh_constant * torch.tanh(logits) | ||||
|             # distribution | ||||
|             op_distribution = Categorical(logits=logits) | ||||
|             op_index = op_distribution.sample() | ||||
|             sampled_arch.append(op_index.item()) | ||||
|  | ||||
|             op_log_prob = op_distribution.log_prob(op_index) | ||||
|             log_probs.append(op_log_prob.view(-1)) | ||||
|             op_entropy = op_distribution.entropy() | ||||
|             entropys.append(op_entropy.view(-1)) | ||||
|  | ||||
|             # obtain the input embedding for the next step | ||||
|             inputs = self.w_embd(op_index) | ||||
|         return ( | ||||
|             torch.sum(torch.cat(log_probs)), | ||||
|             torch.sum(torch.cat(entropys)), | ||||
|             sampled_arch, | ||||
|         ) | ||||
							
								
								
									
										142
									
								
								correlation/models/cell_searchs/search_model_gdas.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										142
									
								
								correlation/models/cell_searchs/search_model_gdas.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,142 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkGDAS(nn.Module): | ||||
|  | ||||
|     # def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkGDAS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.tau = 10 | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_tau(self): | ||||
|         return self.tau | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             return "arch-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         while True: | ||||
|             gumbels = -torch.empty_like(self.arch_parameters).exponential_().log() | ||||
|             logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau | ||||
|             probs = nn.functional.softmax(logits, dim=1) | ||||
|             index = probs.max(-1, keepdim=True)[1] | ||||
|             one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|             hardwts = one_h - probs.detach() + probs | ||||
|             if ( | ||||
|                 (torch.isinf(gumbels).any()) | ||||
|                 or (torch.isinf(probs).any()) | ||||
|                 or (torch.isnan(probs).any()) | ||||
|             ): | ||||
|                 continue | ||||
|             else: | ||||
|                 break | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell.forward_gdas(feature, hardwts, index) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										200
									
								
								correlation/models/cell_searchs/search_model_gdas_frc_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										200
									
								
								correlation/models/cell_searchs/search_model_gdas_frc_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,200 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
|  | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
| from ..cell_operations import RAW_OP_CLASSES | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkGDAS_FRC(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C, | ||||
|         N, | ||||
|         steps, | ||||
|         multiplier, | ||||
|         stem_multiplier, | ||||
|         num_classes, | ||||
|         search_space, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetworkGDAS_FRC, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = RAW_OP_CLASSES["gdas_reduction"]( | ||||
|                     C_prev_prev, | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     reduction_prev, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     search_space, | ||||
|                     steps, | ||||
|                     multiplier, | ||||
|                     C_prev_prev, | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     reduction, | ||||
|                     reduction_prev, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     reduction | ||||
|                     or num_edge == cell.num_edges | ||||
|                     and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = ( | ||||
|                 C_prev, | ||||
|                 cell.multiplier * C_curr, | ||||
|                 reduction, | ||||
|             ) | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.tau = 10 | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_tau(self): | ||||
|         return self.tau | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}".format(A) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self): | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         def get_gumbel_prob(xins): | ||||
|             while True: | ||||
|                 gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|                 logits = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|                 probs = nn.functional.softmax(logits, dim=1) | ||||
|                 index = probs.max(-1, keepdim=True)[1] | ||||
|                 one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|                 hardwts = one_h - probs.detach() + probs | ||||
|                 if ( | ||||
|                     (torch.isinf(gumbels).any()) | ||||
|                     or (torch.isinf(probs).any()) | ||||
|                     or (torch.isnan(probs).any()) | ||||
|                 ): | ||||
|                     continue | ||||
|                 else: | ||||
|                     break | ||||
|             return hardwts, index | ||||
|  | ||||
|         hardwts, index = get_gumbel_prob(self.arch_parameters) | ||||
|  | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if cell.reduction: | ||||
|                 s0, s1 = s1, cell(s0, s1) | ||||
|             else: | ||||
|                 s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										197
									
								
								correlation/models/cell_searchs/search_model_gdas_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										197
									
								
								correlation/models/cell_searchs/search_model_gdas_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,197 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkGDAS(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C, | ||||
|         N, | ||||
|         steps, | ||||
|         multiplier, | ||||
|         stem_multiplier, | ||||
|         num_classes, | ||||
|         search_space, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetworkGDAS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = SearchCell( | ||||
|                 search_space, | ||||
|                 steps, | ||||
|                 multiplier, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_normal_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.arch_reduce_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.tau = 10 | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_tau(self): | ||||
|         return self.tau | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|             B = "arch-reduce-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}\n{:}".format(A, B) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self): | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|             gene_reduce = _parse( | ||||
|                 torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|             "reduce": gene_reduce, | ||||
|             "reduce_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         def get_gumbel_prob(xins): | ||||
|             while True: | ||||
|                 gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|                 logits = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|                 probs = nn.functional.softmax(logits, dim=1) | ||||
|                 index = probs.max(-1, keepdim=True)[1] | ||||
|                 one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|                 hardwts = one_h - probs.detach() + probs | ||||
|                 if ( | ||||
|                     (torch.isinf(gumbels).any()) | ||||
|                     or (torch.isinf(probs).any()) | ||||
|                     or (torch.isnan(probs).any()) | ||||
|                 ): | ||||
|                     continue | ||||
|                 else: | ||||
|                     break | ||||
|             return hardwts, index | ||||
|  | ||||
|         normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters) | ||||
|         reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters) | ||||
|  | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if cell.reduction: | ||||
|                 hardwts, index = reduce_hardwts, reduce_index | ||||
|             else: | ||||
|                 hardwts, index = normal_hardwts, normal_index | ||||
|             s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										102
									
								
								correlation/models/cell_searchs/search_model_random.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										102
									
								
								correlation/models/cell_searchs/search_model_random.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,102 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ############################################################################## | ||||
| # Random Search and Reproducibility for Neural Architecture Search, UAI 2019 # | ||||
| ############################################################################## | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkRANDOM(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkRANDOM, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_cache = None | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def random_genotype(self, set_cache): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op_name = random.choice(self.op_names) | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         arch = Structure(genotypes) | ||||
|         if set_cache: | ||||
|             self.arch_cache = arch | ||||
|         return arch | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell.forward_dynamic(feature, self.arch_cache) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|         return out, logits | ||||
							
								
								
									
										178
									
								
								correlation/models/cell_searchs/search_model_setn.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										178
									
								
								correlation/models/cell_searchs/search_model_setn.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,178 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkSETN(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkSETN, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.mode = "urs" | ||||
|         self.dynamic_cell = None | ||||
|  | ||||
|     def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|         assert mode in ["urs", "joint", "select", "dynamic"] | ||||
|         self.mode = mode | ||||
|         if mode == "dynamic": | ||||
|             self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|         else: | ||||
|             self.dynamic_cell = None | ||||
|  | ||||
|     def get_cal_mode(self): | ||||
|         return self.mode | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def dync_genotype(self, use_random=False): | ||||
|         genotypes = [] | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if use_random: | ||||
|                     op_name = random.choice(self.op_names) | ||||
|                 else: | ||||
|                     weights = alphas_cpu[self.edge2index[node_str]] | ||||
|                     op_index = torch.multinomial(weights, 1).item() | ||||
|                     op_name = self.op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def get_log_prob(self, arch): | ||||
|         with torch.no_grad(): | ||||
|             logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|         select_logits = [] | ||||
|         for i, node_info in enumerate(arch.nodes): | ||||
|             for op, xin in node_info: | ||||
|                 node_str = "{:}<-{:}".format(i + 1, xin) | ||||
|                 op_index = self.op_names.index(op) | ||||
|                 select_logits.append(logits[self.edge2index[node_str], op_index]) | ||||
|         return sum(select_logits).item() | ||||
|  | ||||
|     def return_topK(self, K): | ||||
|         archs = Structure.gen_all(self.op_names, self.max_nodes, False) | ||||
|         pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|         if K < 0 or K >= len(archs): | ||||
|             K = len(archs) | ||||
|         sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|         return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|         return return_pairs | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         alphas = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = alphas.detach().cpu() | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 if self.mode == "urs": | ||||
|                     feature = cell.forward_urs(feature) | ||||
|                 elif self.mode == "select": | ||||
|                     feature = cell.forward_select(feature, alphas_cpu) | ||||
|                 elif self.mode == "joint": | ||||
|                     feature = cell.forward_joint(feature, alphas) | ||||
|                 elif self.mode == "dynamic": | ||||
|                     feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|                 else: | ||||
|                     raise ValueError("invalid mode={:}".format(self.mode)) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										205
									
								
								correlation/models/cell_searchs/search_model_setn_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										205
									
								
								correlation/models/cell_searchs/search_model_setn_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,205 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import List, Text, Dict | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkSETN(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C: int, | ||||
|         N: int, | ||||
|         steps: int, | ||||
|         multiplier: int, | ||||
|         stem_multiplier: int, | ||||
|         num_classes: int, | ||||
|         search_space: List[Text], | ||||
|         affine: bool, | ||||
|         track_running_stats: bool, | ||||
|     ): | ||||
|         super(NASNetworkSETN, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = SearchCell( | ||||
|                 search_space, | ||||
|                 steps, | ||||
|                 multiplier, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_normal_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.arch_reduce_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.mode = "urs" | ||||
|         self.dynamic_cell = None | ||||
|  | ||||
|     def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|         assert mode in ["urs", "joint", "select", "dynamic"] | ||||
|         self.mode = mode | ||||
|         if mode == "dynamic": | ||||
|             self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|         else: | ||||
|             self.dynamic_cell = None | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|             B = "arch-reduce-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}\n{:}".format(A, B) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def dync_genotype(self, use_random=False): | ||||
|         genotypes = [] | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if use_random: | ||||
|                     op_name = random.choice(self.op_names) | ||||
|                 else: | ||||
|                     weights = alphas_cpu[self.edge2index[node_str]] | ||||
|                     op_index = torch.multinomial(weights, 1).item() | ||||
|                     op_name = self.op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def genotype(self): | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|             gene_reduce = _parse( | ||||
|                 torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|             "reduce": gene_reduce, | ||||
|             "reduce_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1) | ||||
|         reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1) | ||||
|  | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             # [TODO] | ||||
|             raise NotImplementedError | ||||
|             if cell.reduction: | ||||
|                 hardwts, index = reduce_hardwts, reduce_index | ||||
|             else: | ||||
|                 hardwts, index = normal_hardwts, normal_index | ||||
|             s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										74
									
								
								correlation/models/clone_weights.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								correlation/models/clone_weights.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,74 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def copy_conv(module, init): | ||||
|     assert isinstance(module, nn.Conv2d), "invalid module : {:}".format(module) | ||||
|     assert isinstance(init, nn.Conv2d), "invalid module : {:}".format(init) | ||||
|     new_i, new_o = module.in_channels, module.out_channels | ||||
|     module.weight.copy_(init.weight.detach()[:new_o, :new_i]) | ||||
|     if module.bias is not None: | ||||
|         module.bias.copy_(init.bias.detach()[:new_o]) | ||||
|  | ||||
|  | ||||
| def copy_bn(module, init): | ||||
|     assert isinstance(module, nn.BatchNorm2d), "invalid module : {:}".format(module) | ||||
|     assert isinstance(init, nn.BatchNorm2d), "invalid module : {:}".format(init) | ||||
|     num_features = module.num_features | ||||
|     if module.weight is not None: | ||||
|         module.weight.copy_(init.weight.detach()[:num_features]) | ||||
|     if module.bias is not None: | ||||
|         module.bias.copy_(init.bias.detach()[:num_features]) | ||||
|     if module.running_mean is not None: | ||||
|         module.running_mean.copy_(init.running_mean.detach()[:num_features]) | ||||
|     if module.running_var is not None: | ||||
|         module.running_var.copy_(init.running_var.detach()[:num_features]) | ||||
|  | ||||
|  | ||||
| def copy_fc(module, init): | ||||
|     assert isinstance(module, nn.Linear), "invalid module : {:}".format(module) | ||||
|     assert isinstance(init, nn.Linear), "invalid module : {:}".format(init) | ||||
|     new_i, new_o = module.in_features, module.out_features | ||||
|     module.weight.copy_(init.weight.detach()[:new_o, :new_i]) | ||||
|     if module.bias is not None: | ||||
|         module.bias.copy_(init.bias.detach()[:new_o]) | ||||
|  | ||||
|  | ||||
| def copy_base(module, init): | ||||
|     assert type(module).__name__ in [ | ||||
|         "ConvBNReLU", | ||||
|         "Downsample", | ||||
|     ], "invalid module : {:}".format(module) | ||||
|     assert type(init).__name__ in [ | ||||
|         "ConvBNReLU", | ||||
|         "Downsample", | ||||
|     ], "invalid module : {:}".format(init) | ||||
|     if module.conv is not None: | ||||
|         copy_conv(module.conv, init.conv) | ||||
|     if module.bn is not None: | ||||
|         copy_bn(module.bn, init.bn) | ||||
|  | ||||
|  | ||||
| def copy_basic(module, init): | ||||
|     copy_base(module.conv_a, init.conv_a) | ||||
|     copy_base(module.conv_b, init.conv_b) | ||||
|     if module.downsample is not None: | ||||
|         if init.downsample is not None: | ||||
|             copy_base(module.downsample, init.downsample) | ||||
|         # else: | ||||
|         # import pdb; pdb.set_trace() | ||||
|  | ||||
|  | ||||
| def init_from_model(network, init_model): | ||||
|     with torch.no_grad(): | ||||
|         copy_fc(network.classifier, init_model.classifier) | ||||
|         for base, target in zip(init_model.layers, network.layers): | ||||
|             assert ( | ||||
|                 type(base).__name__ == type(target).__name__ | ||||
|             ), "invalid type : {:} vs {:}".format(base, target) | ||||
|             if type(base).__name__ == "ConvBNReLU": | ||||
|                 copy_base(target, base) | ||||
|             elif type(base).__name__ == "ResNetBasicblock": | ||||
|                 copy_basic(target, base) | ||||
|             else: | ||||
|                 raise ValueError("unknown type name : {:}".format(type(base).__name__)) | ||||
							
								
								
									
										16
									
								
								correlation/models/initialization.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								correlation/models/initialization.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,16 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def initialize_resnet(m): | ||||
|     if isinstance(m, nn.Conv2d): | ||||
|         nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | ||||
|         if m.bias is not None: | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|     elif isinstance(m, nn.BatchNorm2d): | ||||
|         nn.init.constant_(m.weight, 1) | ||||
|         if m.bias is not None: | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|     elif isinstance(m, nn.Linear): | ||||
|         nn.init.normal_(m.weight, 0, 0.01) | ||||
|         nn.init.constant_(m.bias, 0) | ||||
							
								
								
									
										287
									
								
								correlation/models/shape_infers/InferCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										287
									
								
								correlation/models/shape_infers/InferCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,287 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(nOut) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.bn: | ||||
|             out = self.bn(conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     num_conv = 2 | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs) | ||||
|  | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             iCs[0], | ||||
|             iCs[1], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[2] | ||||
|         elif iCs[0] != iCs[2]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim  = max(residual_in, iCs[2]) | ||||
|         self.out_dim = iCs[2] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + basicblock | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             iCs[1], | ||||
|             iCs[2], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         elif iCs[0] != iCs[3]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim = max(residual_in, iCs[3]) | ||||
|         self.out_dim = iCs[3] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + bottleneck | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class InferCifarResNet(nn.Module): | ||||
|     def __init__( | ||||
|         self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual | ||||
|     ): | ||||
|         super(InferCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|         assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks) | ||||
|  | ||||
|         self.message = ( | ||||
|             "InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.xchannels = xchannels | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     xchannels[0], | ||||
|                     xchannels[1], | ||||
|                     3, | ||||
|                     1, | ||||
|                     1, | ||||
|                     False, | ||||
|                     has_avg=False, | ||||
|                     has_bn=True, | ||||
|                     has_relu=True, | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         last_channel_idx = 1 | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 num_conv = block.num_conv | ||||
|                 iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1] | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iCs, stride) | ||||
|                 last_channel_idx += num_conv | ||||
|                 self.xchannels[last_channel_idx] = module.out_dim | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iCs, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 if iL + 1 == xblocks[stage]:  # reach the maximum depth | ||||
|                     out_channel = module.out_dim | ||||
|                     for iiL in range(iL + 1, layer_blocks): | ||||
|                         last_channel_idx += num_conv | ||||
|                     self.xchannels[last_channel_idx] = module.out_dim | ||||
|                     break | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, ResNetBasicblock): | ||||
|                     nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|                 elif isinstance(m, ResNetBottleneck): | ||||
|                     nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										263
									
								
								correlation/models/shape_infers/InferCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										263
									
								
								correlation/models/shape_infers/InferCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,263 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(nOut) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.bn: | ||||
|             out = self.bn(conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     num_conv = 2 | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|  | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + basicblock | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes * self.expansion, | ||||
|             1, | ||||
|             1, | ||||
|             0, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=False, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + bottleneck | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class InferDepthCifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual): | ||||
|         super(InferDepthCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|         assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks) | ||||
|  | ||||
|         self.message = ( | ||||
|             "InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         self.channels = [16] | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     planes, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 if iL + 1 == xblocks[stage]:  # reach the maximum depth | ||||
|                     break | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(self.channels[-1], num_classes) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, ResNetBasicblock): | ||||
|                     nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|                 elif isinstance(m, ResNetBottleneck): | ||||
|                     nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										277
									
								
								correlation/models/shape_infers/InferCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										277
									
								
								correlation/models/shape_infers/InferCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,277 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(nOut) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.bn: | ||||
|             out = self.bn(conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     num_conv = 2 | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs) | ||||
|  | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             iCs[0], | ||||
|             iCs[1], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[2] | ||||
|         elif iCs[0] != iCs[2]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim  = max(residual_in, iCs[2]) | ||||
|         self.out_dim = iCs[2] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + basicblock | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             iCs[1], | ||||
|             iCs[2], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         elif iCs[0] != iCs[3]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim = max(residual_in, iCs[3]) | ||||
|         self.out_dim = iCs[3] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + bottleneck | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class InferWidthCifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual): | ||||
|         super(InferWidthCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = ( | ||||
|             "InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.xchannels = xchannels | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     xchannels[0], | ||||
|                     xchannels[1], | ||||
|                     3, | ||||
|                     1, | ||||
|                     1, | ||||
|                     False, | ||||
|                     has_avg=False, | ||||
|                     has_bn=True, | ||||
|                     has_relu=True, | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         last_channel_idx = 1 | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 num_conv = block.num_conv | ||||
|                 iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1] | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iCs, stride) | ||||
|                 last_channel_idx += num_conv | ||||
|                 self.xchannels[last_channel_idx] = module.out_dim | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iCs, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, ResNetBasicblock): | ||||
|                     nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|                 elif isinstance(m, ResNetBottleneck): | ||||
|                     nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										324
									
								
								correlation/models/shape_infers/InferImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										324
									
								
								correlation/models/shape_infers/InferImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,324 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|  | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(nOut) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.bn: | ||||
|             out = self.bn(conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     num_conv = 2 | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs) | ||||
|  | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             iCs[0], | ||||
|             iCs[1], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[2] | ||||
|         elif iCs[0] != iCs[2]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim  = max(residual_in, iCs[2]) | ||||
|         self.out_dim = iCs[2] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + basicblock | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             iCs[1], | ||||
|             iCs[2], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         elif iCs[0] != iCs[3]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim = max(residual_in, iCs[3]) | ||||
|         self.out_dim = iCs[3] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + bottleneck | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class InferImagenetResNet(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         block_name, | ||||
|         layers, | ||||
|         xblocks, | ||||
|         xchannels, | ||||
|         deep_stem, | ||||
|         num_classes, | ||||
|         zero_init_residual, | ||||
|     ): | ||||
|         super(InferImagenetResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "BasicBlock": | ||||
|             block = ResNetBasicblock | ||||
|         elif block_name == "Bottleneck": | ||||
|             block = ResNetBottleneck | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|         assert len(xblocks) == len( | ||||
|             layers | ||||
|         ), "invalid layers : {:} vs xblocks : {:}".format(layers, xblocks) | ||||
|  | ||||
|         self.message = "InferImagenetResNet : Depth : {:} -> {:}, Layers for each block : {:}".format( | ||||
|             sum(layers) * block.num_conv, sum(xblocks) * block.num_conv, xblocks | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.xchannels = xchannels | ||||
|         if not deep_stem: | ||||
|             self.layers = nn.ModuleList( | ||||
|                 [ | ||||
|                     ConvBNReLU( | ||||
|                         xchannels[0], | ||||
|                         xchannels[1], | ||||
|                         7, | ||||
|                         2, | ||||
|                         3, | ||||
|                         False, | ||||
|                         has_avg=False, | ||||
|                         has_bn=True, | ||||
|                         has_relu=True, | ||||
|                     ) | ||||
|                 ] | ||||
|             ) | ||||
|             last_channel_idx = 1 | ||||
|         else: | ||||
|             self.layers = nn.ModuleList( | ||||
|                 [ | ||||
|                     ConvBNReLU( | ||||
|                         xchannels[0], | ||||
|                         xchannels[1], | ||||
|                         3, | ||||
|                         2, | ||||
|                         1, | ||||
|                         False, | ||||
|                         has_avg=False, | ||||
|                         has_bn=True, | ||||
|                         has_relu=True, | ||||
|                     ), | ||||
|                     ConvBNReLU( | ||||
|                         xchannels[1], | ||||
|                         xchannels[2], | ||||
|                         3, | ||||
|                         1, | ||||
|                         1, | ||||
|                         False, | ||||
|                         has_avg=False, | ||||
|                         has_bn=True, | ||||
|                         has_relu=True, | ||||
|                     ), | ||||
|                 ] | ||||
|             ) | ||||
|             last_channel_idx = 2 | ||||
|         self.layers.append(nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) | ||||
|         for stage, layer_blocks in enumerate(layers): | ||||
|             for iL in range(layer_blocks): | ||||
|                 num_conv = block.num_conv | ||||
|                 iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1] | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iCs, stride) | ||||
|                 last_channel_idx += num_conv | ||||
|                 self.xchannels[last_channel_idx] = module.out_dim | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iCs, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 if iL + 1 == xblocks[stage]:  # reach the maximum depth | ||||
|                     out_channel = module.out_dim | ||||
|                     for iiL in range(iL + 1, layer_blocks): | ||||
|                         last_channel_idx += num_conv | ||||
|                     self.xchannels[last_channel_idx] = module.out_dim | ||||
|                     break | ||||
|         assert last_channel_idx + 1 == len(self.xchannels), "{:} vs {:}".format( | ||||
|             last_channel_idx, len(self.xchannels) | ||||
|         ) | ||||
|         self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||||
|         self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, ResNetBasicblock): | ||||
|                     nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|                 elif isinstance(m, ResNetBottleneck): | ||||
|                     nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										176
									
								
								correlation/models/shape_infers/InferMobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										176
									
								
								correlation/models/shape_infers/InferMobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,176 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 | ||||
| ##################################################### | ||||
| from torch import nn | ||||
|  | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import parse_channel_info | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         in_planes, | ||||
|         out_planes, | ||||
|         kernel_size, | ||||
|         stride, | ||||
|         groups, | ||||
|         has_bn=True, | ||||
|         has_relu=True, | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         padding = (kernel_size - 1) // 2 | ||||
|         self.conv = nn.Conv2d( | ||||
|             in_planes, | ||||
|             out_planes, | ||||
|             kernel_size, | ||||
|             stride, | ||||
|             padding, | ||||
|             groups=groups, | ||||
|             bias=False, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(out_planes) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU6(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv(x) | ||||
|         if self.bn: | ||||
|             out = self.bn(out) | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class InvertedResidual(nn.Module): | ||||
|     def __init__(self, channels, stride, expand_ratio, additive): | ||||
|         super(InvertedResidual, self).__init__() | ||||
|         self.stride = stride | ||||
|         assert stride in [1, 2], "invalid stride : {:}".format(stride) | ||||
|         assert len(channels) in [2, 3], "invalid channels : {:}".format(channels) | ||||
|  | ||||
|         if len(channels) == 2: | ||||
|             layers = [] | ||||
|         else: | ||||
|             layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)] | ||||
|         layers.extend( | ||||
|             [ | ||||
|                 # dw | ||||
|                 ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]), | ||||
|                 # pw-linear | ||||
|                 ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False), | ||||
|             ] | ||||
|         ) | ||||
|         self.conv = nn.Sequential(*layers) | ||||
|         self.additive = additive | ||||
|         if self.additive and channels[0] != channels[-1]: | ||||
|             self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False) | ||||
|         else: | ||||
|             self.shortcut = None | ||||
|         self.out_dim = channels[-1] | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv(x) | ||||
|         # if self.additive: return additive_func(out, x) | ||||
|         if self.shortcut: | ||||
|             return out + self.shortcut(x) | ||||
|         else: | ||||
|             return out | ||||
|  | ||||
|  | ||||
| class InferMobileNetV2(nn.Module): | ||||
|     def __init__(self, num_classes, xchannels, xblocks, dropout): | ||||
|         super(InferMobileNetV2, self).__init__() | ||||
|         block = InvertedResidual | ||||
|         inverted_residual_setting = [ | ||||
|             # t, c,  n, s | ||||
|             [1, 16, 1, 1], | ||||
|             [6, 24, 2, 2], | ||||
|             [6, 32, 3, 2], | ||||
|             [6, 64, 4, 2], | ||||
|             [6, 96, 3, 1], | ||||
|             [6, 160, 3, 2], | ||||
|             [6, 320, 1, 1], | ||||
|         ] | ||||
|         assert len(inverted_residual_setting) == len( | ||||
|             xblocks | ||||
|         ), "invalid number of layers : {:} vs {:}".format( | ||||
|             len(inverted_residual_setting), len(xblocks) | ||||
|         ) | ||||
|         for block_num, ir_setting in zip(xblocks, inverted_residual_setting): | ||||
|             assert block_num <= ir_setting[2], "{:} vs {:}".format( | ||||
|                 block_num, ir_setting | ||||
|             ) | ||||
|         xchannels = parse_channel_info(xchannels) | ||||
|         # for i, chs in enumerate(xchannels): | ||||
|         #  if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs) | ||||
|         self.xchannels = xchannels | ||||
|         self.message = "InferMobileNetV2 : xblocks={:}".format(xblocks) | ||||
|         # building first layer | ||||
|         features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)] | ||||
|         last_channel_idx = 1 | ||||
|  | ||||
|         # building inverted residual blocks | ||||
|         for stage, (t, c, n, s) in enumerate(inverted_residual_setting): | ||||
|             for i in range(n): | ||||
|                 stride = s if i == 0 else 1 | ||||
|                 additv = True if i > 0 else False | ||||
|                 module = block(self.xchannels[last_channel_idx], stride, t, additv) | ||||
|                 features.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format( | ||||
|                     stage, | ||||
|                     i, | ||||
|                     n, | ||||
|                     len(features), | ||||
|                     self.xchannels[last_channel_idx], | ||||
|                     stride, | ||||
|                     t, | ||||
|                     c, | ||||
|                 ) | ||||
|                 last_channel_idx += 1 | ||||
|                 if i + 1 == xblocks[stage]: | ||||
|                     out_channel = module.out_dim | ||||
|                     for iiL in range(i + 1, n): | ||||
|                         last_channel_idx += 1 | ||||
|                     self.xchannels[last_channel_idx][0] = module.out_dim | ||||
|                     break | ||||
|         # building last several layers | ||||
|         features.append( | ||||
|             ConvBNReLU( | ||||
|                 self.xchannels[last_channel_idx][0], | ||||
|                 self.xchannels[last_channel_idx][1], | ||||
|                 1, | ||||
|                 1, | ||||
|                 1, | ||||
|             ) | ||||
|         ) | ||||
|         assert last_channel_idx + 2 == len(self.xchannels), "{:} vs {:}".format( | ||||
|             last_channel_idx, len(self.xchannels) | ||||
|         ) | ||||
|         # make it nn.Sequential | ||||
|         self.features = nn.Sequential(*features) | ||||
|  | ||||
|         # building classifier | ||||
|         self.classifier = nn.Sequential( | ||||
|             nn.Dropout(dropout), | ||||
|             nn.Linear(self.xchannels[last_channel_idx][1], num_classes), | ||||
|         ) | ||||
|  | ||||
|         # weight initialization | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         features = self.features(inputs) | ||||
|         vectors = features.mean([2, 3]) | ||||
|         predicts = self.classifier(vectors) | ||||
|         return features, predicts | ||||
							
								
								
									
										74
									
								
								correlation/models/shape_infers/InferTinyCellNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								correlation/models/shape_infers/InferTinyCellNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,74 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| from typing import List, Text, Any | ||||
| import torch.nn as nn | ||||
|  | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from ..cell_infers.cells import InferCell | ||||
|  | ||||
|  | ||||
| class DynamicShapeTinyNet(nn.Module): | ||||
|     def __init__(self, channels: List[int], genotype: Any, num_classes: int): | ||||
|         super(DynamicShapeTinyNet, self).__init__() | ||||
|         self._channels = channels | ||||
|         if len(channels) % 3 != 2: | ||||
|             raise ValueError("invalid number of layers : {:}".format(len(channels))) | ||||
|         self._num_stage = N = len(channels) // 3 | ||||
|  | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(channels[0]), | ||||
|         ) | ||||
|  | ||||
|         # layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         c_prev = channels[0] | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(c_prev, c_curr, 2, True) | ||||
|             else: | ||||
|                 cell = InferCell(genotype, c_prev, c_curr, 1) | ||||
|             self.cells.append(cell) | ||||
|             c_prev = cell.out_dim | ||||
|         self._num_layer = len(self.cells) | ||||
|  | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(c_prev, num_classes) | ||||
|  | ||||
|     def get_message(self) -> Text: | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_channels}, N={_num_stage}, L={_num_layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return logits | ||||
|  | ||||
|     def forward_pre_GAP(self, inputs): | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         return out | ||||
|  | ||||
							
								
								
									
										9
									
								
								correlation/models/shape_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								correlation/models/shape_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| from .InferCifarResNet_width import InferWidthCifarResNet | ||||
| from .InferImagenetResNet import InferImagenetResNet | ||||
| from .InferCifarResNet_depth import InferDepthCifarResNet | ||||
| from .InferCifarResNet import InferCifarResNet | ||||
| from .InferMobileNetV2 import InferMobileNetV2 | ||||
| from .InferTinyCellNet import DynamicShapeTinyNet | ||||
							
								
								
									
										5
									
								
								correlation/models/shape_infers/shared_utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								correlation/models/shape_infers/shared_utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,5 @@ | ||||
| def parse_channel_info(xstring): | ||||
|     blocks = xstring.split(" ") | ||||
|     blocks = [x.split("-") for x in blocks] | ||||
|     blocks = [[int(_) for _ in x] for x in blocks] | ||||
|     return blocks | ||||
							
								
								
									
										760
									
								
								correlation/models/shape_searchs/SearchCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										760
									
								
								correlation/models/shape_searchs/SearchCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,760 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import additive_func | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
| from .SoftSelect import linear_forward | ||||
| from .SoftSelect import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth, return_num): | ||||
|     if nDepth == 2: | ||||
|         choices = (1, 2) | ||||
|     elif nDepth == 3: | ||||
|         choices = (1, 2, 3) | ||||
|     elif nDepth > 3: | ||||
|         choices = list(range(1, nDepth + 1, 2)) | ||||
|         if choices[-1] < nDepth: | ||||
|             choices.append(nDepth) | ||||
|     else: | ||||
|         raise ValueError("invalid nDepth : {:}".format(nDepth)) | ||||
|     if return_num: | ||||
|         return len(choices) | ||||
|     else: | ||||
|         return choices | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|     iC = conv.in_channels | ||||
|     fill_size = list(inputs.size()) | ||||
|     fill_size[1] = iC - fill_size[1] | ||||
|     filled = torch.zeros(fill_size, device=inputs.device) | ||||
|     xinputs = torch.cat((inputs, filled), dim=1) | ||||
|     outputs = conv(xinputs) | ||||
|     selecteds = [outputs[:, :oC] for oC in choices] | ||||
|     return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.InShape = None | ||||
|         self.OutShape = None | ||||
|         self.choices = get_width_choices(nOut) | ||||
|         self.register_buffer("choices_tensor", torch.Tensor(self.choices)) | ||||
|  | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         # if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|         # else       : self.bn  = None | ||||
|         self.has_bn = has_bn | ||||
|         self.BNs = nn.ModuleList() | ||||
|         for i, _out in enumerate(self.choices): | ||||
|             self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_flops(self, channels, check_range=True, divide=1): | ||||
|         iC, oC = channels | ||||
|         if check_range: | ||||
|             assert ( | ||||
|                 iC <= self.conv.in_channels and oC <= self.conv.out_channels | ||||
|             ), "{:} vs {:}  |  {:} vs {:}".format( | ||||
|                 iC, self.conv.in_channels, oC, self.conv.out_channels | ||||
|             ) | ||||
|         assert ( | ||||
|             isinstance(self.InShape, tuple) and len(self.InShape) == 2 | ||||
|         ), "invalid in-shape : {:}".format(self.InShape) | ||||
|         assert ( | ||||
|             isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 | ||||
|         ), "invalid out-shape : {:}".format(self.OutShape) | ||||
|         # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|         conv_per_position_flops = ( | ||||
|             self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups | ||||
|         ) | ||||
|         all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|         flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|         if self.conv.bias is not None: | ||||
|             flops += all_positions / divide | ||||
|         return flops | ||||
|  | ||||
|     def get_range(self): | ||||
|         return [self.choices] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|         index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|         probability = torch.squeeze(probability) | ||||
|         assert len(index) == 2, "invalid length : {:}".format(index) | ||||
|         # compute expected flop | ||||
|         # coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|         expected_outC = (self.choices_tensor * probability).sum() | ||||
|         expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         # convolutional layer | ||||
|         out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|         out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|         # merge | ||||
|         out_channel = max([x.size(1) for x in out_bns]) | ||||
|         outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|         outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|         out = outA * prob[0] + outB * prob[1] | ||||
|         # out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         return out, expected_outC, expected_flop | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.has_bn: | ||||
|             out = self.BNs[-1](conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|             self.OutShape = (out.size(-2), out.size(-1)) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     expansion = 1 | ||||
|     num_conv = 2 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 3, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_C = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_C = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_b.OutShape[0] | ||||
|                 * self.conv_b.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|         out_a, expected_inC_a, expected_flop_a = self.conv_a( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_b, expected_inC_b, expected_flop_b = self.conv_b( | ||||
|             (out_a, expected_inC_a, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[1], indexes[1], probs[1]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_b) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_b, | ||||
|             sum([expected_flop_a, expected_flop_b, expected_flop_c]), | ||||
|         ) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes * self.expansion, | ||||
|             1, | ||||
|             1, | ||||
|             0, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=False, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return ( | ||||
|             self.conv_1x1.get_range() | ||||
|             + self.conv_3x3.get_range() | ||||
|             + self.conv_1x4.get_range() | ||||
|         ) | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 4, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|         flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_D = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_D = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_1x4.OutShape[0] | ||||
|                 * self.conv_1x4.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, bottleneck) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|         out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( | ||||
|             (out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( | ||||
|             (out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[2], indexes[2], probs[2]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_1x4) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_1x4, | ||||
|             sum( | ||||
|                 [ | ||||
|                     expected_flop_1x1, | ||||
|                     expected_flop_3x3, | ||||
|                     expected_flop_1x4, | ||||
|                     expected_flop_c, | ||||
|                 ] | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class SearchShapeCifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, num_classes): | ||||
|         super(SearchShapeCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = ( | ||||
|             "SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.channels = [16] | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         self.InShape = None | ||||
|         self.depth_info = OrderedDict() | ||||
|         self.depth_at_i = OrderedDict() | ||||
|         for stage in range(3): | ||||
|             cur_block_choices = get_depth_choices(layer_blocks, False) | ||||
|             assert ( | ||||
|                 cur_block_choices[-1] == layer_blocks | ||||
|             ), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks) | ||||
|             self.message += ( | ||||
|                 "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format( | ||||
|                     stage, cur_block_choices, layer_blocks | ||||
|                 ) | ||||
|             ) | ||||
|             block_choices, xstart = [], len(self.layers) | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 # added for depth | ||||
|                 layer_index = len(self.layers) - 1 | ||||
|                 if iL + 1 in cur_block_choices: | ||||
|                     block_choices.append(layer_index) | ||||
|                 if iL + 1 == layer_blocks: | ||||
|                     self.depth_info[layer_index] = { | ||||
|                         "choices": block_choices, | ||||
|                         "stage": stage, | ||||
|                         "xstart": xstart, | ||||
|                     } | ||||
|         self.depth_info_list = [] | ||||
|         for xend, info in self.depth_info.items(): | ||||
|             self.depth_info_list.append((xend, info)) | ||||
|             xstart, xstage = info["xstart"], info["stage"] | ||||
|             for ilayer in range(xstart, xend + 1): | ||||
|                 idx = bisect_right(info["choices"], ilayer - 1) | ||||
|                 self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         self.InShape = None | ||||
|         self.tau = -1 | ||||
|         self.search_mode = "basic" | ||||
|         # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|         # parameters for width | ||||
|         self.Ranges = [] | ||||
|         self.layer2indexRange = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             start_index = len(self.Ranges) | ||||
|             self.Ranges += layer.get_range() | ||||
|             self.layer2indexRange.append((start_index, len(self.Ranges))) | ||||
|         assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format( | ||||
|             len(self.Ranges) + 1, depth | ||||
|         ) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "width_attentions", | ||||
|             nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))), | ||||
|         ) | ||||
|         self.register_parameter( | ||||
|             "depth_attentions", | ||||
|             nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))), | ||||
|         ) | ||||
|         nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|         nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def arch_parameters(self, LR=None): | ||||
|         if LR is None: | ||||
|             return [self.width_attentions, self.depth_attentions] | ||||
|         else: | ||||
|             return [ | ||||
|                 {"params": self.width_attentions, "lr": LR}, | ||||
|                 {"params": self.depth_attentions, "lr": LR}, | ||||
|             ] | ||||
|  | ||||
|     def base_parameters(self): | ||||
|         return ( | ||||
|             list(self.layers.parameters()) | ||||
|             + list(self.avgpool.parameters()) | ||||
|             + list(self.classifier.parameters()) | ||||
|         ) | ||||
|  | ||||
|     def get_flop(self, mode, config_dict, extra_info): | ||||
|         if config_dict is not None: | ||||
|             config_dict = config_dict.copy() | ||||
|         # select channels | ||||
|         channels = [3] | ||||
|         for i, weight in enumerate(self.width_attentions): | ||||
|             if mode == "genotype": | ||||
|                 with torch.no_grad(): | ||||
|                     probe = nn.functional.softmax(weight, dim=0) | ||||
|                     C = self.Ranges[i][torch.argmax(probe).item()] | ||||
|             elif mode == "max": | ||||
|                 C = self.Ranges[i][-1] | ||||
|             elif mode == "fix": | ||||
|                 C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|             elif mode == "random": | ||||
|                 assert isinstance(extra_info, float), "invalid extra_info : {:}".format( | ||||
|                     extra_info | ||||
|                 ) | ||||
|                 with torch.no_grad(): | ||||
|                     prob = nn.functional.softmax(weight, dim=0) | ||||
|                     approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|                     for j in range(prob.size(0)): | ||||
|                         prob[j] = 1 / ( | ||||
|                             abs(j - (approximate_C - self.Ranges[i][j])) + 0.2 | ||||
|                         ) | ||||
|                     C = self.Ranges[i][torch.multinomial(prob, 1, False).item()] | ||||
|             else: | ||||
|                 raise ValueError("invalid mode : {:}".format(mode)) | ||||
|             channels.append(C) | ||||
|         # select depth | ||||
|         if mode == "genotype": | ||||
|             with torch.no_grad(): | ||||
|                 depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|                 choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|         elif mode == "max" or mode == "fix": | ||||
|             choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))] | ||||
|         elif mode == "random": | ||||
|             with torch.no_grad(): | ||||
|                 depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|                 choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | ||||
|         else: | ||||
|             raise ValueError("invalid mode : {:}".format(mode)) | ||||
|         selected_layers = [] | ||||
|         for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|             xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1 | ||||
|             selected_layers.append(xtemp) | ||||
|         flop = 0 | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             s, e = self.layer2indexRange[i] | ||||
|             xchl = tuple(channels[s : e + 1]) | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 if xatti <= choices[xstagei]:  # leave this depth | ||||
|                     flop += layer.get_flops(xchl) | ||||
|                 else: | ||||
|                     flop += 0  # do not use this layer | ||||
|             else: | ||||
|                 flop += layer.get_flops(xchl) | ||||
|         # the last fc layer | ||||
|         flop += channels[-1] * self.classifier.out_features | ||||
|         if config_dict is None: | ||||
|             return flop / 1e6 | ||||
|         else: | ||||
|             config_dict["xchannels"] = channels | ||||
|             config_dict["xblocks"] = selected_layers | ||||
|             config_dict["super_type"] = "infer-shape" | ||||
|             config_dict["estimated_FLOP"] = flop / 1e6 | ||||
|             return flop / 1e6, config_dict | ||||
|  | ||||
|     def get_arch_info(self): | ||||
|         string = ( | ||||
|             "for depth and width, there are {:} + {:} attention probabilities.".format( | ||||
|                 len(self.depth_attentions), len(self.width_attentions) | ||||
|             ) | ||||
|         ) | ||||
|         string += "\n{:}".format(self.depth_info) | ||||
|         discrepancy = [] | ||||
|         with torch.no_grad(): | ||||
|             for i, att in enumerate(self.depth_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.depth_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.4f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:17s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || discrepancy={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|             string += "\n-----------------------------------------------" | ||||
|             for i, att in enumerate(self.width_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.width_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.3f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:52s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || dis={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|         return string, discrepancy | ||||
|  | ||||
|     def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|         assert ( | ||||
|             epoch_ratio >= 0 and epoch_ratio <= 1 | ||||
|         ), "invalid epoch-ratio : {:}".format(epoch_ratio) | ||||
|         tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, inputs): | ||||
|         flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|         flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         flop_depth_probs = torch.flip( | ||||
|             torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1] | ||||
|         ) | ||||
|         selected_widths, selected_width_probs = select2withP( | ||||
|             self.width_attentions, self.tau | ||||
|         ) | ||||
|         selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|         with torch.no_grad(): | ||||
|             selected_widths = selected_widths.cpu() | ||||
|  | ||||
|         x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|         feature_maps = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             selected_w_index = selected_widths[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             selected_w_probs = selected_width_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             layer_prob = flop_width_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             x, expected_inC, expected_flop = layer( | ||||
|                 (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) | ||||
|             ) | ||||
|             feature_maps.append(x) | ||||
|             last_channel_idx += layer.num_conv | ||||
|             if i in self.depth_info:  # aggregate the information | ||||
|                 choices = self.depth_info[i]["choices"] | ||||
|                 xstagei = self.depth_info[i]["stage"] | ||||
|                 # print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) | ||||
|                 # for A, W in zip(choices, selected_depth_probs[xstagei]): | ||||
|                 #  print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) | ||||
|                 possible_tensors = [] | ||||
|                 max_C = max(feature_maps[A].size(1) for A in choices) | ||||
|                 for tempi, A in enumerate(choices): | ||||
|                     xtensor = ChannelWiseInter(feature_maps[A], max_C) | ||||
|                     # drop_ratio = 1-(tempi+1.0)/len(choices) | ||||
|                     # xtensor = drop_path(xtensor, drop_ratio) | ||||
|                     possible_tensors.append(xtensor) | ||||
|                 weighted_sum = sum( | ||||
|                     xtensor * W | ||||
|                     for xtensor, W in zip( | ||||
|                         possible_tensors, selected_depth_probs[xstagei] | ||||
|                     ) | ||||
|                 ) | ||||
|                 x = weighted_sum | ||||
|  | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop | ||||
|             else: | ||||
|                 x_expected_flop = expected_flop | ||||
|             flops.append(x_expected_flop) | ||||
|         flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6)) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = linear_forward(features, self.classifier) | ||||
|         return logits, torch.stack([sum(flops)]) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										515
									
								
								correlation/models/shape_searchs/SearchCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										515
									
								
								correlation/models/shape_searchs/SearchCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,515 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import additive_func | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
| from .SoftSelect import linear_forward | ||||
| from .SoftSelect import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth, return_num): | ||||
|     if nDepth == 2: | ||||
|         choices = (1, 2) | ||||
|     elif nDepth == 3: | ||||
|         choices = (1, 2, 3) | ||||
|     elif nDepth > 3: | ||||
|         choices = list(range(1, nDepth + 1, 2)) | ||||
|         if choices[-1] < nDepth: | ||||
|             choices.append(nDepth) | ||||
|     else: | ||||
|         raise ValueError("invalid nDepth : {:}".format(nDepth)) | ||||
|     if return_num: | ||||
|         return len(choices) | ||||
|     else: | ||||
|         return choices | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.InShape = None | ||||
|         self.OutShape = None | ||||
|         self.choices = get_width_choices(nOut) | ||||
|         self.register_buffer("choices_tensor", torch.Tensor(self.choices)) | ||||
|  | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(nOut) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=False) | ||||
|         else: | ||||
|             self.relu = None | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|  | ||||
|     def get_flops(self, divide=1): | ||||
|         iC, oC = self.in_dim, self.out_dim | ||||
|         assert ( | ||||
|             iC <= self.conv.in_channels and oC <= self.conv.out_channels | ||||
|         ), "{:} vs {:}  |  {:} vs {:}".format( | ||||
|             iC, self.conv.in_channels, oC, self.conv.out_channels | ||||
|         ) | ||||
|         assert ( | ||||
|             isinstance(self.InShape, tuple) and len(self.InShape) == 2 | ||||
|         ), "invalid in-shape : {:}".format(self.InShape) | ||||
|         assert ( | ||||
|             isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 | ||||
|         ), "invalid out-shape : {:}".format(self.OutShape) | ||||
|         # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|         conv_per_position_flops = ( | ||||
|             self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups | ||||
|         ) | ||||
|         all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|         flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|         if self.conv.bias is not None: | ||||
|             flops += all_positions / divide | ||||
|         return flops | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.bn: | ||||
|             out = self.bn(conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|             self.OutShape = (out.size(-2), out.size(-1)) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     expansion = 1 | ||||
|     num_conv = 2 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_flops(self, divide=1): | ||||
|         flop_A = self.conv_a.get_flops(divide) | ||||
|         flop_B = self.conv_b.get_flops(divide) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_C = self.downsample.get_flops(divide) | ||||
|         else: | ||||
|             flop_C = 0 | ||||
|         return flop_A + flop_B + flop_C | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes * self.expansion, | ||||
|             1, | ||||
|             1, | ||||
|             0, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=False, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return ( | ||||
|             self.conv_1x1.get_range() | ||||
|             + self.conv_3x3.get_range() | ||||
|             + self.conv_1x4.get_range() | ||||
|         ) | ||||
|  | ||||
|     def get_flops(self, divide): | ||||
|         flop_A = self.conv_1x1.get_flops(divide) | ||||
|         flop_B = self.conv_3x3.get_flops(divide) | ||||
|         flop_C = self.conv_1x4.get_flops(divide) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_D = self.downsample.get_flops(divide) | ||||
|         else: | ||||
|             flop_D = 0 | ||||
|         return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, bottleneck) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class SearchDepthCifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, num_classes): | ||||
|         super(SearchDepthCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = ( | ||||
|             "SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.channels = [16] | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         self.InShape = None | ||||
|         self.depth_info = OrderedDict() | ||||
|         self.depth_at_i = OrderedDict() | ||||
|         for stage in range(3): | ||||
|             cur_block_choices = get_depth_choices(layer_blocks, False) | ||||
|             assert ( | ||||
|                 cur_block_choices[-1] == layer_blocks | ||||
|             ), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks) | ||||
|             self.message += ( | ||||
|                 "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format( | ||||
|                     stage, cur_block_choices, layer_blocks | ||||
|                 ) | ||||
|             ) | ||||
|             block_choices, xstart = [], len(self.layers) | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 # added for depth | ||||
|                 layer_index = len(self.layers) - 1 | ||||
|                 if iL + 1 in cur_block_choices: | ||||
|                     block_choices.append(layer_index) | ||||
|                 if iL + 1 == layer_blocks: | ||||
|                     self.depth_info[layer_index] = { | ||||
|                         "choices": block_choices, | ||||
|                         "stage": stage, | ||||
|                         "xstart": xstart, | ||||
|                     } | ||||
|         self.depth_info_list = [] | ||||
|         for xend, info in self.depth_info.items(): | ||||
|             self.depth_info_list.append((xend, info)) | ||||
|             xstart, xstage = info["xstart"], info["stage"] | ||||
|             for ilayer in range(xstart, xend + 1): | ||||
|                 idx = bisect_right(info["choices"], ilayer - 1) | ||||
|                 self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         self.InShape = None | ||||
|         self.tau = -1 | ||||
|         self.search_mode = "basic" | ||||
|         # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "depth_attentions", | ||||
|             nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))), | ||||
|         ) | ||||
|         nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def arch_parameters(self): | ||||
|         return [self.depth_attentions] | ||||
|  | ||||
|     def base_parameters(self): | ||||
|         return ( | ||||
|             list(self.layers.parameters()) | ||||
|             + list(self.avgpool.parameters()) | ||||
|             + list(self.classifier.parameters()) | ||||
|         ) | ||||
|  | ||||
|     def get_flop(self, mode, config_dict, extra_info): | ||||
|         if config_dict is not None: | ||||
|             config_dict = config_dict.copy() | ||||
|         # select depth | ||||
|         if mode == "genotype": | ||||
|             with torch.no_grad(): | ||||
|                 depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|                 choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|         elif mode == "max": | ||||
|             choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))] | ||||
|         elif mode == "random": | ||||
|             with torch.no_grad(): | ||||
|                 depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|                 choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | ||||
|         else: | ||||
|             raise ValueError("invalid mode : {:}".format(mode)) | ||||
|         selected_layers = [] | ||||
|         for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|             xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1 | ||||
|             selected_layers.append(xtemp) | ||||
|         flop = 0 | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 if xatti <= choices[xstagei]:  # leave this depth | ||||
|                     flop += layer.get_flops() | ||||
|                 else: | ||||
|                     flop += 0  # do not use this layer | ||||
|             else: | ||||
|                 flop += layer.get_flops() | ||||
|         # the last fc layer | ||||
|         flop += self.classifier.in_features * self.classifier.out_features | ||||
|         if config_dict is None: | ||||
|             return flop / 1e6 | ||||
|         else: | ||||
|             config_dict["xblocks"] = selected_layers | ||||
|             config_dict["super_type"] = "infer-depth" | ||||
|             config_dict["estimated_FLOP"] = flop / 1e6 | ||||
|             return flop / 1e6, config_dict | ||||
|  | ||||
|     def get_arch_info(self): | ||||
|         string = "for depth, there are {:} attention probabilities.".format( | ||||
|             len(self.depth_attentions) | ||||
|         ) | ||||
|         string += "\n{:}".format(self.depth_info) | ||||
|         discrepancy = [] | ||||
|         with torch.no_grad(): | ||||
|             for i, att in enumerate(self.depth_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.depth_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.4f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:17s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || discrepancy={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|         return string, discrepancy | ||||
|  | ||||
|     def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|         assert ( | ||||
|             epoch_ratio >= 0 and epoch_ratio <= 1 | ||||
|         ), "invalid epoch-ratio : {:}".format(epoch_ratio) | ||||
|         tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, inputs): | ||||
|         flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         flop_depth_probs = torch.flip( | ||||
|             torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1] | ||||
|         ) | ||||
|         selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|  | ||||
|         x, flops = inputs, [] | ||||
|         feature_maps = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             layer_i = layer(x) | ||||
|             feature_maps.append(layer_i) | ||||
|             if i in self.depth_info:  # aggregate the information | ||||
|                 choices = self.depth_info[i]["choices"] | ||||
|                 xstagei = self.depth_info[i]["stage"] | ||||
|                 possible_tensors = [] | ||||
|                 for tempi, A in enumerate(choices): | ||||
|                     xtensor = feature_maps[A] | ||||
|                     possible_tensors.append(xtensor) | ||||
|                 weighted_sum = sum( | ||||
|                     xtensor * W | ||||
|                     for xtensor, W in zip( | ||||
|                         possible_tensors, selected_depth_probs[xstagei] | ||||
|                     ) | ||||
|                 ) | ||||
|                 x = weighted_sum | ||||
|             else: | ||||
|                 x = layer_i | ||||
|  | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 # print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6))) | ||||
|                 x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops( | ||||
|                     1e6 | ||||
|                 ) | ||||
|             else: | ||||
|                 x_expected_flop = layer.get_flops(1e6) | ||||
|             flops.append(x_expected_flop) | ||||
|         flops.append( | ||||
|             (self.classifier.in_features * self.classifier.out_features * 1.0 / 1e6) | ||||
|         ) | ||||
|  | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = linear_forward(features, self.classifier) | ||||
|         return logits, torch.stack([sum(flops)]) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										619
									
								
								correlation/models/shape_searchs/SearchCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										619
									
								
								correlation/models/shape_searchs/SearchCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,619 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import additive_func | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
| from .SoftSelect import linear_forward | ||||
| from .SoftSelect import get_width_choices as get_choices | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|     iC = conv.in_channels | ||||
|     fill_size = list(inputs.size()) | ||||
|     fill_size[1] = iC - fill_size[1] | ||||
|     filled = torch.zeros(fill_size, device=inputs.device) | ||||
|     xinputs = torch.cat((inputs, filled), dim=1) | ||||
|     outputs = conv(xinputs) | ||||
|     selecteds = [outputs[:, :oC] for oC in choices] | ||||
|     return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.InShape = None | ||||
|         self.OutShape = None | ||||
|         self.choices = get_choices(nOut) | ||||
|         self.register_buffer("choices_tensor", torch.Tensor(self.choices)) | ||||
|  | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         # if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|         # else       : self.bn  = None | ||||
|         self.has_bn = has_bn | ||||
|         self.BNs = nn.ModuleList() | ||||
|         for i, _out in enumerate(self.choices): | ||||
|             self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_flops(self, channels, check_range=True, divide=1): | ||||
|         iC, oC = channels | ||||
|         if check_range: | ||||
|             assert ( | ||||
|                 iC <= self.conv.in_channels and oC <= self.conv.out_channels | ||||
|             ), "{:} vs {:}  |  {:} vs {:}".format( | ||||
|                 iC, self.conv.in_channels, oC, self.conv.out_channels | ||||
|             ) | ||||
|         assert ( | ||||
|             isinstance(self.InShape, tuple) and len(self.InShape) == 2 | ||||
|         ), "invalid in-shape : {:}".format(self.InShape) | ||||
|         assert ( | ||||
|             isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 | ||||
|         ), "invalid out-shape : {:}".format(self.OutShape) | ||||
|         # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|         conv_per_position_flops = ( | ||||
|             self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups | ||||
|         ) | ||||
|         all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|         flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|         if self.conv.bias is not None: | ||||
|             flops += all_positions / divide | ||||
|         return flops | ||||
|  | ||||
|     def get_range(self): | ||||
|         return [self.choices] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|         index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|         probability = torch.squeeze(probability) | ||||
|         assert len(index) == 2, "invalid length : {:}".format(index) | ||||
|         # compute expected flop | ||||
|         # coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|         expected_outC = (self.choices_tensor * probability).sum() | ||||
|         expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         # convolutional layer | ||||
|         out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|         out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|         # merge | ||||
|         out_channel = max([x.size(1) for x in out_bns]) | ||||
|         outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|         outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|         out = outA * prob[0] + outB * prob[1] | ||||
|         # out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         return out, expected_outC, expected_flop | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.has_bn: | ||||
|             out = self.BNs[-1](conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|             self.OutShape = (out.size(-2), out.size(-1)) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     expansion = 1 | ||||
|     num_conv = 2 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 3, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_C = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_C = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_b.OutShape[0] | ||||
|                 * self.conv_b.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|         out_a, expected_inC_a, expected_flop_a = self.conv_a( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_b, expected_inC_b, expected_flop_b = self.conv_b( | ||||
|             (out_a, expected_inC_a, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[1], indexes[1], probs[1]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_b) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_b, | ||||
|             sum([expected_flop_a, expected_flop_b, expected_flop_c]), | ||||
|         ) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes * self.expansion, | ||||
|             1, | ||||
|             1, | ||||
|             0, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=False, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return ( | ||||
|             self.conv_1x1.get_range() | ||||
|             + self.conv_3x3.get_range() | ||||
|             + self.conv_1x4.get_range() | ||||
|         ) | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 4, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|         flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_D = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_D = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_1x4.OutShape[0] | ||||
|                 * self.conv_1x4.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, bottleneck) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|         out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( | ||||
|             (out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( | ||||
|             (out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[2], indexes[2], probs[2]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_1x4) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_1x4, | ||||
|             sum( | ||||
|                 [ | ||||
|                     expected_flop_1x1, | ||||
|                     expected_flop_3x3, | ||||
|                     expected_flop_1x4, | ||||
|                     expected_flop_c, | ||||
|                 ] | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class SearchWidthCifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, num_classes): | ||||
|         super(SearchWidthCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = ( | ||||
|             "SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.channels = [16] | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         self.InShape = None | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         self.InShape = None | ||||
|         self.tau = -1 | ||||
|         self.search_mode = "basic" | ||||
|         # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|         # parameters for width | ||||
|         self.Ranges = [] | ||||
|         self.layer2indexRange = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             start_index = len(self.Ranges) | ||||
|             self.Ranges += layer.get_range() | ||||
|             self.layer2indexRange.append((start_index, len(self.Ranges))) | ||||
|         assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format( | ||||
|             len(self.Ranges) + 1, depth | ||||
|         ) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "width_attentions", | ||||
|             nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))), | ||||
|         ) | ||||
|         nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def arch_parameters(self): | ||||
|         return [self.width_attentions] | ||||
|  | ||||
|     def base_parameters(self): | ||||
|         return ( | ||||
|             list(self.layers.parameters()) | ||||
|             + list(self.avgpool.parameters()) | ||||
|             + list(self.classifier.parameters()) | ||||
|         ) | ||||
|  | ||||
|     def get_flop(self, mode, config_dict, extra_info): | ||||
|         if config_dict is not None: | ||||
|             config_dict = config_dict.copy() | ||||
|         # weights = [F.softmax(x, dim=0) for x in self.width_attentions] | ||||
|         channels = [3] | ||||
|         for i, weight in enumerate(self.width_attentions): | ||||
|             if mode == "genotype": | ||||
|                 with torch.no_grad(): | ||||
|                     probe = nn.functional.softmax(weight, dim=0) | ||||
|                     C = self.Ranges[i][torch.argmax(probe).item()] | ||||
|             elif mode == "max": | ||||
|                 C = self.Ranges[i][-1] | ||||
|             elif mode == "fix": | ||||
|                 C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|             elif mode == "random": | ||||
|                 assert isinstance(extra_info, float), "invalid extra_info : {:}".format( | ||||
|                     extra_info | ||||
|                 ) | ||||
|                 with torch.no_grad(): | ||||
|                     prob = nn.functional.softmax(weight, dim=0) | ||||
|                     approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|                     for j in range(prob.size(0)): | ||||
|                         prob[j] = 1 / ( | ||||
|                             abs(j - (approximate_C - self.Ranges[i][j])) + 0.2 | ||||
|                         ) | ||||
|                     C = self.Ranges[i][torch.multinomial(prob, 1, False).item()] | ||||
|             else: | ||||
|                 raise ValueError("invalid mode : {:}".format(mode)) | ||||
|             channels.append(C) | ||||
|         flop = 0 | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             s, e = self.layer2indexRange[i] | ||||
|             xchl = tuple(channels[s : e + 1]) | ||||
|             flop += layer.get_flops(xchl) | ||||
|         # the last fc layer | ||||
|         flop += channels[-1] * self.classifier.out_features | ||||
|         if config_dict is None: | ||||
|             return flop / 1e6 | ||||
|         else: | ||||
|             config_dict["xchannels"] = channels | ||||
|             config_dict["super_type"] = "infer-width" | ||||
|             config_dict["estimated_FLOP"] = flop / 1e6 | ||||
|             return flop / 1e6, config_dict | ||||
|  | ||||
|     def get_arch_info(self): | ||||
|         string = "for width, there are {:} attention probabilities.".format( | ||||
|             len(self.width_attentions) | ||||
|         ) | ||||
|         discrepancy = [] | ||||
|         with torch.no_grad(): | ||||
|             for i, att in enumerate(self.width_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.width_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.3f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:52s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || dis={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|         return string, discrepancy | ||||
|  | ||||
|     def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|         assert ( | ||||
|             epoch_ratio >= 0 and epoch_ratio <= 1 | ||||
|         ), "invalid epoch-ratio : {:}".format(epoch_ratio) | ||||
|         tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, inputs): | ||||
|         flop_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|         selected_widths, selected_probs = select2withP(self.width_attentions, self.tau) | ||||
|         with torch.no_grad(): | ||||
|             selected_widths = selected_widths.cpu() | ||||
|  | ||||
|         x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             selected_w_index = selected_widths[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             selected_w_probs = selected_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             layer_prob = flop_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             x, expected_inC, expected_flop = layer( | ||||
|                 (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) | ||||
|             ) | ||||
|             last_channel_idx += layer.num_conv | ||||
|             flops.append(expected_flop) | ||||
|         flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6)) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = linear_forward(features, self.classifier) | ||||
|         return logits, torch.stack([sum(flops)]) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										766
									
								
								correlation/models/shape_searchs/SearchImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										766
									
								
								correlation/models/shape_searchs/SearchImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,766 @@ | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import additive_func | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
| from .SoftSelect import linear_forward | ||||
| from .SoftSelect import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(layers): | ||||
|     min_depth = min(layers) | ||||
|     info = {"num": min_depth} | ||||
|     for i, depth in enumerate(layers): | ||||
|         choices = [] | ||||
|         for j in range(1, min_depth + 1): | ||||
|             choices.append(int(float(depth) * j / min_depth)) | ||||
|         info[i] = choices | ||||
|     return info | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|     iC = conv.in_channels | ||||
|     fill_size = list(inputs.size()) | ||||
|     fill_size[1] = iC - fill_size[1] | ||||
|     filled = torch.zeros(fill_size, device=inputs.device) | ||||
|     xinputs = torch.cat((inputs, filled), dim=1) | ||||
|     outputs = conv(xinputs) | ||||
|     selecteds = [outputs[:, :oC] for oC in choices] | ||||
|     return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         nIn, | ||||
|         nOut, | ||||
|         kernel, | ||||
|         stride, | ||||
|         padding, | ||||
|         bias, | ||||
|         has_avg, | ||||
|         has_bn, | ||||
|         has_relu, | ||||
|         last_max_pool=False, | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.InShape = None | ||||
|         self.OutShape = None | ||||
|         self.choices = get_width_choices(nOut) | ||||
|         self.register_buffer("choices_tensor", torch.Tensor(self.choices)) | ||||
|  | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         # if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|         # else       : self.bn  = None | ||||
|         self.has_bn = has_bn | ||||
|         self.BNs = nn.ModuleList() | ||||
|         for i, _out in enumerate(self.choices): | ||||
|             self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|         if last_max_pool: | ||||
|             self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||
|         else: | ||||
|             self.maxpool = None | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_flops(self, channels, check_range=True, divide=1): | ||||
|         iC, oC = channels | ||||
|         if check_range: | ||||
|             assert ( | ||||
|                 iC <= self.conv.in_channels and oC <= self.conv.out_channels | ||||
|             ), "{:} vs {:}  |  {:} vs {:}".format( | ||||
|                 iC, self.conv.in_channels, oC, self.conv.out_channels | ||||
|             ) | ||||
|         assert ( | ||||
|             isinstance(self.InShape, tuple) and len(self.InShape) == 2 | ||||
|         ), "invalid in-shape : {:}".format(self.InShape) | ||||
|         assert ( | ||||
|             isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 | ||||
|         ), "invalid out-shape : {:}".format(self.OutShape) | ||||
|         # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|         conv_per_position_flops = ( | ||||
|             self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups | ||||
|         ) | ||||
|         all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|         flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|         if self.conv.bias is not None: | ||||
|             flops += all_positions / divide | ||||
|         return flops | ||||
|  | ||||
|     def get_range(self): | ||||
|         return [self.choices] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|         index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|         probability = torch.squeeze(probability) | ||||
|         assert len(index) == 2, "invalid length : {:}".format(index) | ||||
|         # compute expected flop | ||||
|         # coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|         expected_outC = (self.choices_tensor * probability).sum() | ||||
|         expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         # convolutional layer | ||||
|         out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|         out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|         # merge | ||||
|         out_channel = max([x.size(1) for x in out_bns]) | ||||
|         outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|         outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|         out = outA * prob[0] + outB * prob[1] | ||||
|         # out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         if self.maxpool: | ||||
|             out = self.maxpool(out) | ||||
|         return out, expected_outC, expected_flop | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.has_bn: | ||||
|             out = self.BNs[-1](conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|             self.OutShape = (out.size(-2), out.size(-1)) | ||||
|         if self.maxpool: | ||||
|             out = self.maxpool(out) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     expansion = 1 | ||||
|     num_conv = 2 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 3, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_C = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_C = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_b.OutShape[0] | ||||
|                 * self.conv_b.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|         # import pdb; pdb.set_trace() | ||||
|         out_a, expected_inC_a, expected_flop_a = self.conv_a( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_b, expected_inC_b, expected_flop_b = self.conv_b( | ||||
|             (out_a, expected_inC_a, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[1], indexes[1], probs[1]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_b) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_b, | ||||
|             sum([expected_flop_a, expected_flop_b, expected_flop_c]), | ||||
|         ) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes * self.expansion, | ||||
|             1, | ||||
|             1, | ||||
|             0, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=False, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return ( | ||||
|             self.conv_1x1.get_range() | ||||
|             + self.conv_3x3.get_range() | ||||
|             + self.conv_1x4.get_range() | ||||
|         ) | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 4, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|         flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_D = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_D = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_1x4.OutShape[0] | ||||
|                 * self.conv_1x4.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, bottleneck) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|         out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( | ||||
|             (out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( | ||||
|             (out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[2], indexes[2], probs[2]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_1x4) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_1x4, | ||||
|             sum( | ||||
|                 [ | ||||
|                     expected_flop_1x1, | ||||
|                     expected_flop_3x3, | ||||
|                     expected_flop_1x4, | ||||
|                     expected_flop_c, | ||||
|                 ] | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class SearchShapeImagenetResNet(nn.Module): | ||||
|     def __init__(self, block_name, layers, deep_stem, num_classes): | ||||
|         super(SearchShapeImagenetResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "BasicBlock": | ||||
|             block = ResNetBasicblock | ||||
|         elif block_name == "Bottleneck": | ||||
|             block = ResNetBottleneck | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = ( | ||||
|             "SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 sum(layers) * block.num_conv, layers | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         if not deep_stem: | ||||
|             self.layers = nn.ModuleList( | ||||
|                 [ | ||||
|                     ConvBNReLU( | ||||
|                         3, | ||||
|                         64, | ||||
|                         7, | ||||
|                         2, | ||||
|                         3, | ||||
|                         False, | ||||
|                         has_avg=False, | ||||
|                         has_bn=True, | ||||
|                         has_relu=True, | ||||
|                         last_max_pool=True, | ||||
|                     ) | ||||
|                 ] | ||||
|             ) | ||||
|             self.channels = [64] | ||||
|         else: | ||||
|             self.layers = nn.ModuleList( | ||||
|                 [ | ||||
|                     ConvBNReLU( | ||||
|                         3, 32, 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                     ), | ||||
|                     ConvBNReLU( | ||||
|                         32, | ||||
|                         64, | ||||
|                         3, | ||||
|                         1, | ||||
|                         1, | ||||
|                         False, | ||||
|                         has_avg=False, | ||||
|                         has_bn=True, | ||||
|                         has_relu=True, | ||||
|                         last_max_pool=True, | ||||
|                     ), | ||||
|                 ] | ||||
|             ) | ||||
|             self.channels = [32, 64] | ||||
|  | ||||
|         meta_depth_info = get_depth_choices(layers) | ||||
|         self.InShape = None | ||||
|         self.depth_info = OrderedDict() | ||||
|         self.depth_at_i = OrderedDict() | ||||
|         for stage, layer_blocks in enumerate(layers): | ||||
|             cur_block_choices = meta_depth_info[stage] | ||||
|             assert ( | ||||
|                 cur_block_choices[-1] == layer_blocks | ||||
|             ), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks) | ||||
|             block_choices, xstart = [], len(self.layers) | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 64 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 # added for depth | ||||
|                 layer_index = len(self.layers) - 1 | ||||
|                 if iL + 1 in cur_block_choices: | ||||
|                     block_choices.append(layer_index) | ||||
|                 if iL + 1 == layer_blocks: | ||||
|                     self.depth_info[layer_index] = { | ||||
|                         "choices": block_choices, | ||||
|                         "stage": stage, | ||||
|                         "xstart": xstart, | ||||
|                     } | ||||
|         self.depth_info_list = [] | ||||
|         for xend, info in self.depth_info.items(): | ||||
|             self.depth_info_list.append((xend, info)) | ||||
|             xstart, xstage = info["xstart"], info["stage"] | ||||
|             for ilayer in range(xstart, xend + 1): | ||||
|                 idx = bisect_right(info["choices"], ilayer - 1) | ||||
|                 self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|         self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         self.InShape = None | ||||
|         self.tau = -1 | ||||
|         self.search_mode = "basic" | ||||
|         # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|         # parameters for width | ||||
|         self.Ranges = [] | ||||
|         self.layer2indexRange = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             start_index = len(self.Ranges) | ||||
|             self.Ranges += layer.get_range() | ||||
|             self.layer2indexRange.append((start_index, len(self.Ranges))) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "width_attentions", | ||||
|             nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))), | ||||
|         ) | ||||
|         self.register_parameter( | ||||
|             "depth_attentions", | ||||
|             nn.Parameter(torch.Tensor(len(layers), meta_depth_info["num"])), | ||||
|         ) | ||||
|         nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|         nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def arch_parameters(self, LR=None): | ||||
|         if LR is None: | ||||
|             return [self.width_attentions, self.depth_attentions] | ||||
|         else: | ||||
|             return [ | ||||
|                 {"params": self.width_attentions, "lr": LR}, | ||||
|                 {"params": self.depth_attentions, "lr": LR}, | ||||
|             ] | ||||
|  | ||||
|     def base_parameters(self): | ||||
|         return ( | ||||
|             list(self.layers.parameters()) | ||||
|             + list(self.avgpool.parameters()) | ||||
|             + list(self.classifier.parameters()) | ||||
|         ) | ||||
|  | ||||
|     def get_flop(self, mode, config_dict, extra_info): | ||||
|         if config_dict is not None: | ||||
|             config_dict = config_dict.copy() | ||||
|         # select channels | ||||
|         channels = [3] | ||||
|         for i, weight in enumerate(self.width_attentions): | ||||
|             if mode == "genotype": | ||||
|                 with torch.no_grad(): | ||||
|                     probe = nn.functional.softmax(weight, dim=0) | ||||
|                     C = self.Ranges[i][torch.argmax(probe).item()] | ||||
|             else: | ||||
|                 raise ValueError("invalid mode : {:}".format(mode)) | ||||
|             channels.append(C) | ||||
|         # select depth | ||||
|         if mode == "genotype": | ||||
|             with torch.no_grad(): | ||||
|                 depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|                 choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|         else: | ||||
|             raise ValueError("invalid mode : {:}".format(mode)) | ||||
|         selected_layers = [] | ||||
|         for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|             xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1 | ||||
|             selected_layers.append(xtemp) | ||||
|         flop = 0 | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             s, e = self.layer2indexRange[i] | ||||
|             xchl = tuple(channels[s : e + 1]) | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 if xatti <= choices[xstagei]:  # leave this depth | ||||
|                     flop += layer.get_flops(xchl) | ||||
|                 else: | ||||
|                     flop += 0  # do not use this layer | ||||
|             else: | ||||
|                 flop += layer.get_flops(xchl) | ||||
|         # the last fc layer | ||||
|         flop += channels[-1] * self.classifier.out_features | ||||
|         if config_dict is None: | ||||
|             return flop / 1e6 | ||||
|         else: | ||||
|             config_dict["xchannels"] = channels | ||||
|             config_dict["xblocks"] = selected_layers | ||||
|             config_dict["super_type"] = "infer-shape" | ||||
|             config_dict["estimated_FLOP"] = flop / 1e6 | ||||
|             return flop / 1e6, config_dict | ||||
|  | ||||
|     def get_arch_info(self): | ||||
|         string = ( | ||||
|             "for depth and width, there are {:} + {:} attention probabilities.".format( | ||||
|                 len(self.depth_attentions), len(self.width_attentions) | ||||
|             ) | ||||
|         ) | ||||
|         string += "\n{:}".format(self.depth_info) | ||||
|         discrepancy = [] | ||||
|         with torch.no_grad(): | ||||
|             for i, att in enumerate(self.depth_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.depth_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.4f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:17s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || discrepancy={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|             string += "\n-----------------------------------------------" | ||||
|             for i, att in enumerate(self.width_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.width_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.3f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:52s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || dis={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|         return string, discrepancy | ||||
|  | ||||
|     def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|         assert ( | ||||
|             epoch_ratio >= 0 and epoch_ratio <= 1 | ||||
|         ), "invalid epoch-ratio : {:}".format(epoch_ratio) | ||||
|         tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, inputs): | ||||
|         flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|         flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         flop_depth_probs = torch.flip( | ||||
|             torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1] | ||||
|         ) | ||||
|         selected_widths, selected_width_probs = select2withP( | ||||
|             self.width_attentions, self.tau | ||||
|         ) | ||||
|         selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|         with torch.no_grad(): | ||||
|             selected_widths = selected_widths.cpu() | ||||
|  | ||||
|         x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|         feature_maps = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             selected_w_index = selected_widths[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             selected_w_probs = selected_width_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             layer_prob = flop_width_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             x, expected_inC, expected_flop = layer( | ||||
|                 (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) | ||||
|             ) | ||||
|             feature_maps.append(x) | ||||
|             last_channel_idx += layer.num_conv | ||||
|             if i in self.depth_info:  # aggregate the information | ||||
|                 choices = self.depth_info[i]["choices"] | ||||
|                 xstagei = self.depth_info[i]["stage"] | ||||
|                 # print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) | ||||
|                 # for A, W in zip(choices, selected_depth_probs[xstagei]): | ||||
|                 #  print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) | ||||
|                 possible_tensors = [] | ||||
|                 max_C = max(feature_maps[A].size(1) for A in choices) | ||||
|                 for tempi, A in enumerate(choices): | ||||
|                     xtensor = ChannelWiseInter(feature_maps[A], max_C) | ||||
|                     possible_tensors.append(xtensor) | ||||
|                 weighted_sum = sum( | ||||
|                     xtensor * W | ||||
|                     for xtensor, W in zip( | ||||
|                         possible_tensors, selected_depth_probs[xstagei] | ||||
|                     ) | ||||
|                 ) | ||||
|                 x = weighted_sum | ||||
|  | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop | ||||
|             else: | ||||
|                 x_expected_flop = expected_flop | ||||
|             flops.append(x_expected_flop) | ||||
|         flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6)) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = linear_forward(features, self.classifier) | ||||
|         return logits, torch.stack([sum(flops)]) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										466
									
								
								correlation/models/shape_searchs/SearchSimResNet_width.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										466
									
								
								correlation/models/shape_searchs/SearchSimResNet_width.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,466 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import additive_func | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
| from .SoftSelect import linear_forward | ||||
| from .SoftSelect import get_width_choices as get_choices | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|     iC = conv.in_channels | ||||
|     fill_size = list(inputs.size()) | ||||
|     fill_size[1] = iC - fill_size[1] | ||||
|     filled = torch.zeros(fill_size, device=inputs.device) | ||||
|     xinputs = torch.cat((inputs, filled), dim=1) | ||||
|     outputs = conv(xinputs) | ||||
|     selecteds = [outputs[:, :oC] for oC in choices] | ||||
|     return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.InShape = None | ||||
|         self.OutShape = None | ||||
|         self.choices = get_choices(nOut) | ||||
|         self.register_buffer("choices_tensor", torch.Tensor(self.choices)) | ||||
|  | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         # if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|         # else       : self.bn  = None | ||||
|         self.has_bn = has_bn | ||||
|         self.BNs = nn.ModuleList() | ||||
|         for i, _out in enumerate(self.choices): | ||||
|             self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_flops(self, channels, check_range=True, divide=1): | ||||
|         iC, oC = channels | ||||
|         if check_range: | ||||
|             assert ( | ||||
|                 iC <= self.conv.in_channels and oC <= self.conv.out_channels | ||||
|             ), "{:} vs {:}  |  {:} vs {:}".format( | ||||
|                 iC, self.conv.in_channels, oC, self.conv.out_channels | ||||
|             ) | ||||
|         assert ( | ||||
|             isinstance(self.InShape, tuple) and len(self.InShape) == 2 | ||||
|         ), "invalid in-shape : {:}".format(self.InShape) | ||||
|         assert ( | ||||
|             isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 | ||||
|         ), "invalid out-shape : {:}".format(self.OutShape) | ||||
|         # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|         conv_per_position_flops = ( | ||||
|             self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups | ||||
|         ) | ||||
|         all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|         flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|         if self.conv.bias is not None: | ||||
|             flops += all_positions / divide | ||||
|         return flops | ||||
|  | ||||
|     def get_range(self): | ||||
|         return [self.choices] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|         index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|         probability = torch.squeeze(probability) | ||||
|         assert len(index) == 2, "invalid length : {:}".format(index) | ||||
|         # compute expected flop | ||||
|         # coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|         expected_outC = (self.choices_tensor * probability).sum() | ||||
|         expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         # convolutional layer | ||||
|         out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|         out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|         # merge | ||||
|         out_channel = max([x.size(1) for x in out_bns]) | ||||
|         outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|         outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|         out = outA * prob[0] + outB * prob[1] | ||||
|         # out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         return out, expected_outC, expected_flop | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.has_bn: | ||||
|             out = self.BNs[-1](conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|             self.OutShape = (out.size(-2), out.size(-1)) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class SimBlock(nn.Module): | ||||
|     expansion = 1 | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(SimBlock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return self.conv.get_range() | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 2, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv.get_flops([channels[0], channels[1]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_C = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_C = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv.OutShape[0] | ||||
|                 * self.conv.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_C | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert ( | ||||
|             indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1 | ||||
|         ), "invalid size : {:}, {:}, {:}".format( | ||||
|             indexes.size(), probs.size(), probability.size() | ||||
|         ) | ||||
|         out, expected_next_inC, expected_flop = self.conv( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[-1], indexes[-1], probs[-1]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_next_inC, | ||||
|             sum([expected_flop, expected_flop_c]), | ||||
|         ) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         basicblock = self.conv(inputs) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class SearchWidthSimResNet(nn.Module): | ||||
|     def __init__(self, depth, num_classes): | ||||
|         super(SearchWidthSimResNet, self).__init__() | ||||
|  | ||||
|         assert ( | ||||
|             depth - 2 | ||||
|         ) % 3 == 0, "depth should be one of 5, 8, 11, 14, ... instead of {:}".format( | ||||
|             depth | ||||
|         ) | ||||
|         layer_blocks = (depth - 2) // 3 | ||||
|         self.message = ( | ||||
|             "SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.channels = [16] | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         self.InShape = None | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = SimBlock(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         self.InShape = None | ||||
|         self.tau = -1 | ||||
|         self.search_mode = "basic" | ||||
|         # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|         # parameters for width | ||||
|         self.Ranges = [] | ||||
|         self.layer2indexRange = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             start_index = len(self.Ranges) | ||||
|             self.Ranges += layer.get_range() | ||||
|             self.layer2indexRange.append((start_index, len(self.Ranges))) | ||||
|         assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format( | ||||
|             len(self.Ranges) + 1, depth | ||||
|         ) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "width_attentions", | ||||
|             nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))), | ||||
|         ) | ||||
|         nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def arch_parameters(self): | ||||
|         return [self.width_attentions] | ||||
|  | ||||
|     def base_parameters(self): | ||||
|         return ( | ||||
|             list(self.layers.parameters()) | ||||
|             + list(self.avgpool.parameters()) | ||||
|             + list(self.classifier.parameters()) | ||||
|         ) | ||||
|  | ||||
|     def get_flop(self, mode, config_dict, extra_info): | ||||
|         if config_dict is not None: | ||||
|             config_dict = config_dict.copy() | ||||
|         # weights = [F.softmax(x, dim=0) for x in self.width_attentions] | ||||
|         channels = [3] | ||||
|         for i, weight in enumerate(self.width_attentions): | ||||
|             if mode == "genotype": | ||||
|                 with torch.no_grad(): | ||||
|                     probe = nn.functional.softmax(weight, dim=0) | ||||
|                     C = self.Ranges[i][torch.argmax(probe).item()] | ||||
|             elif mode == "max": | ||||
|                 C = self.Ranges[i][-1] | ||||
|             elif mode == "fix": | ||||
|                 C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|             elif mode == "random": | ||||
|                 assert isinstance(extra_info, float), "invalid extra_info : {:}".format( | ||||
|                     extra_info | ||||
|                 ) | ||||
|                 with torch.no_grad(): | ||||
|                     prob = nn.functional.softmax(weight, dim=0) | ||||
|                     approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|                     for j in range(prob.size(0)): | ||||
|                         prob[j] = 1 / ( | ||||
|                             abs(j - (approximate_C - self.Ranges[i][j])) + 0.2 | ||||
|                         ) | ||||
|                     C = self.Ranges[i][torch.multinomial(prob, 1, False).item()] | ||||
|             else: | ||||
|                 raise ValueError("invalid mode : {:}".format(mode)) | ||||
|             channels.append(C) | ||||
|         flop = 0 | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             s, e = self.layer2indexRange[i] | ||||
|             xchl = tuple(channels[s : e + 1]) | ||||
|             flop += layer.get_flops(xchl) | ||||
|         # the last fc layer | ||||
|         flop += channels[-1] * self.classifier.out_features | ||||
|         if config_dict is None: | ||||
|             return flop / 1e6 | ||||
|         else: | ||||
|             config_dict["xchannels"] = channels | ||||
|             config_dict["super_type"] = "infer-width" | ||||
|             config_dict["estimated_FLOP"] = flop / 1e6 | ||||
|             return flop / 1e6, config_dict | ||||
|  | ||||
|     def get_arch_info(self): | ||||
|         string = "for width, there are {:} attention probabilities.".format( | ||||
|             len(self.width_attentions) | ||||
|         ) | ||||
|         discrepancy = [] | ||||
|         with torch.no_grad(): | ||||
|             for i, att in enumerate(self.width_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.width_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.3f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:52s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || dis={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|         return string, discrepancy | ||||
|  | ||||
|     def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|         assert ( | ||||
|             epoch_ratio >= 0 and epoch_ratio <= 1 | ||||
|         ), "invalid epoch-ratio : {:}".format(epoch_ratio) | ||||
|         tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, inputs): | ||||
|         flop_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|         selected_widths, selected_probs = select2withP(self.width_attentions, self.tau) | ||||
|         with torch.no_grad(): | ||||
|             selected_widths = selected_widths.cpu() | ||||
|  | ||||
|         x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             selected_w_index = selected_widths[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             selected_w_probs = selected_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             layer_prob = flop_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             x, expected_inC, expected_flop = layer( | ||||
|                 (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) | ||||
|             ) | ||||
|             last_channel_idx += layer.num_conv | ||||
|             flops.append(expected_flop) | ||||
|         flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6)) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = linear_forward(features, self.classifier) | ||||
|         return logits, torch.stack([sum(flops)]) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										128
									
								
								correlation/models/shape_searchs/SoftSelect.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										128
									
								
								correlation/models/shape_searchs/SoftSelect.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,128 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7): | ||||
|     if tau <= 0: | ||||
|         new_logits = logits | ||||
|         probs = nn.functional.softmax(new_logits, dim=1) | ||||
|     else: | ||||
|         while True:  # a trick to avoid the gumbels bug | ||||
|             gumbels = -torch.empty_like(logits).exponential_().log() | ||||
|             new_logits = (logits.log_softmax(dim=1) + gumbels) / tau | ||||
|             probs = nn.functional.softmax(new_logits, dim=1) | ||||
|             if ( | ||||
|                 (not torch.isinf(gumbels).any()) | ||||
|                 and (not torch.isinf(probs).any()) | ||||
|                 and (not torch.isnan(probs).any()) | ||||
|             ): | ||||
|                 break | ||||
|  | ||||
|     if just_prob: | ||||
|         return probs | ||||
|  | ||||
|     # with torch.no_grad(): # add eps for unexpected torch error | ||||
|     #  probs = nn.functional.softmax(new_logits, dim=1) | ||||
|     #  selected_index = torch.multinomial(probs + eps, 2, False) | ||||
|     with torch.no_grad():  # add eps for unexpected torch error | ||||
|         probs = probs.cpu() | ||||
|         selected_index = torch.multinomial(probs + eps, num, False).to(logits.device) | ||||
|     selected_logit = torch.gather(new_logits, 1, selected_index) | ||||
|     selcted_probs = nn.functional.softmax(selected_logit, dim=1) | ||||
|     return selected_index, selcted_probs | ||||
|  | ||||
|  | ||||
| def ChannelWiseInter(inputs, oC, mode="v2"): | ||||
|     if mode == "v1": | ||||
|         return ChannelWiseInterV1(inputs, oC) | ||||
|     elif mode == "v2": | ||||
|         return ChannelWiseInterV2(inputs, oC) | ||||
|     else: | ||||
|         raise ValueError("invalid mode : {:}".format(mode)) | ||||
|  | ||||
|  | ||||
| def ChannelWiseInterV1(inputs, oC): | ||||
|     assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size()) | ||||
|  | ||||
|     def start_index(a, b, c): | ||||
|         return int(math.floor(float(a * c) / b)) | ||||
|  | ||||
|     def end_index(a, b, c): | ||||
|         return int(math.ceil(float((a + 1) * c) / b)) | ||||
|  | ||||
|     batch, iC, H, W = inputs.size() | ||||
|     outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device) | ||||
|     if iC == oC: | ||||
|         return inputs | ||||
|     for ot in range(oC): | ||||
|         istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC) | ||||
|         values = inputs[:, istartT:iendT].mean(dim=1) | ||||
|         outputs[:, ot, :, :] = values | ||||
|     return outputs | ||||
|  | ||||
|  | ||||
| def ChannelWiseInterV2(inputs, oC): | ||||
|     assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size()) | ||||
|     batch, C, H, W = inputs.size() | ||||
|     if C == oC: | ||||
|         return inputs | ||||
|     else: | ||||
|         return nn.functional.adaptive_avg_pool3d(inputs, (oC, H, W)) | ||||
|     # inputs_5D = inputs.view(batch, 1, C, H, W) | ||||
|     # otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None) | ||||
|     # otputs    = otputs_5D.view(batch, oC, H, W) | ||||
|     # otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False) | ||||
|     # return otputs | ||||
|  | ||||
|  | ||||
| def linear_forward(inputs, linear): | ||||
|     if linear is None: | ||||
|         return inputs | ||||
|     iC = inputs.size(1) | ||||
|     weight = linear.weight[:, :iC] | ||||
|     if linear.bias is None: | ||||
|         bias = None | ||||
|     else: | ||||
|         bias = linear.bias | ||||
|     return nn.functional.linear(inputs, weight, bias) | ||||
|  | ||||
|  | ||||
| def get_width_choices(nOut): | ||||
|     xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] | ||||
|     if nOut is None: | ||||
|         return len(xsrange) | ||||
|     else: | ||||
|         Xs = [int(nOut * i) for i in xsrange] | ||||
|         # xs = [ int(nOut * i // 10) for i in range(2, 11)] | ||||
|         # Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1] | ||||
|         Xs = sorted(list(set(Xs))) | ||||
|         return tuple(Xs) | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth): | ||||
|     if nDepth is None: | ||||
|         return 3 | ||||
|     else: | ||||
|         assert nDepth >= 3, "nDepth should be greater than 2 vs {:}".format(nDepth) | ||||
|         if nDepth == 1: | ||||
|             return (1, 1, 1) | ||||
|         elif nDepth == 2: | ||||
|             return (1, 1, 2) | ||||
|         elif nDepth >= 3: | ||||
|             return (nDepth // 3, nDepth * 2 // 3, nDepth) | ||||
|         else: | ||||
|             raise ValueError("invalid Depth : {:}".format(nDepth)) | ||||
|  | ||||
|  | ||||
| def drop_path(x, drop_prob): | ||||
|     if drop_prob > 0.0: | ||||
|         keep_prob = 1.0 - drop_prob | ||||
|         mask = x.new_zeros(x.size(0), 1, 1, 1) | ||||
|         mask = mask.bernoulli_(keep_prob) | ||||
|         x = x * (mask / keep_prob) | ||||
|         # x.div_(keep_prob) | ||||
|         # x.mul_(mask) | ||||
|     return x | ||||
							
								
								
									
										9
									
								
								correlation/models/shape_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								correlation/models/shape_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from .SearchCifarResNet_width import SearchWidthCifarResNet | ||||
| from .SearchCifarResNet_depth import SearchDepthCifarResNet | ||||
| from .SearchCifarResNet import SearchShapeCifarResNet | ||||
| from .SearchSimResNet_width import SearchWidthSimResNet | ||||
| from .SearchImagenetResNet import SearchShapeImagenetResNet | ||||
| from .generic_size_tiny_cell_model import GenericNAS301Model | ||||
							
								
								
									
										209
									
								
								correlation/models/shape_searchs/generic_size_tiny_cell_model.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										209
									
								
								correlation/models/shape_searchs/generic_size_tiny_cell_model.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,209 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| # Here, we utilized three techniques to search for the number of channels: | ||||
| # - channel-wise interpolation from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + Gumbel-Softmax (mask_gumbel) from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling (mask_rl) from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| from typing import List, Text, Any | ||||
| import random, torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from ..cell_infers.cells import InferCell | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
|  | ||||
|  | ||||
| class GenericNAS301Model(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         candidate_Cs: List[int], | ||||
|         max_num_Cs: int, | ||||
|         genotype: Any, | ||||
|         num_classes: int, | ||||
|         affine: bool, | ||||
|         track_running_stats: bool, | ||||
|     ): | ||||
|         super(GenericNAS301Model, self).__init__() | ||||
|         self._max_num_Cs = max_num_Cs | ||||
|         self._candidate_Cs = candidate_Cs | ||||
|         if max_num_Cs % 3 != 2: | ||||
|             raise ValueError("invalid number of layers : {:}".format(max_num_Cs)) | ||||
|         self._num_stage = N = max_num_Cs // 3 | ||||
|         self._max_C = max(candidate_Cs) | ||||
|  | ||||
|         stem = nn.Sequential( | ||||
|             nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine), | ||||
|             nn.BatchNorm2d( | ||||
|                 self._max_C, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         c_prev = self._max_C | ||||
|         self._cells = nn.ModuleList() | ||||
|         self._cells.append(stem) | ||||
|         for index, reduction in enumerate(layer_reductions): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(c_prev, self._max_C, 2, True) | ||||
|             else: | ||||
|                 cell = InferCell( | ||||
|                     genotype, c_prev, self._max_C, 1, affine, track_running_stats | ||||
|                 ) | ||||
|             self._cells.append(cell) | ||||
|             c_prev = cell.out_dim | ||||
|         self._num_layer = len(self._cells) | ||||
|  | ||||
|         self.lastact = nn.Sequential( | ||||
|             nn.BatchNorm2d( | ||||
|                 c_prev, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|             nn.ReLU(inplace=True), | ||||
|         ) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(c_prev, num_classes) | ||||
|         # algorithm related | ||||
|         self.register_buffer("_tau", torch.zeros(1)) | ||||
|         self._algo = None | ||||
|         self._warmup_ratio = None | ||||
|  | ||||
|     def set_algo(self, algo: Text): | ||||
|         # used for searching | ||||
|         assert self._algo is None, "This functioin can only be called once." | ||||
|         assert algo in ["mask_gumbel", "mask_rl", "tas"], "invalid algo : {:}".format( | ||||
|             algo | ||||
|         ) | ||||
|         self._algo = algo | ||||
|         self._arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(self._max_num_Cs, len(self._candidate_Cs)) | ||||
|         ) | ||||
|         # if algo == 'mask_gumbel' or algo == 'mask_rl': | ||||
|         self.register_buffer( | ||||
|             "_masks", torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs)) | ||||
|         ) | ||||
|         for i in range(len(self._candidate_Cs)): | ||||
|             self._masks.data[i, : self._candidate_Cs[i]] = 1 | ||||
|  | ||||
|     @property | ||||
|     def tau(self): | ||||
|         return self._tau | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self._tau.data[:] = tau | ||||
|  | ||||
|     @property | ||||
|     def warmup_ratio(self): | ||||
|         return self._warmup_ratio | ||||
|  | ||||
|     def set_warmup_ratio(self, ratio: float): | ||||
|         self._warmup_ratio = ratio | ||||
|  | ||||
|     @property | ||||
|     def weights(self): | ||||
|         xlist = list(self._cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) | ||||
|         xlist += list(self.global_pooling.parameters()) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     @property | ||||
|     def alphas(self): | ||||
|         return [self._arch_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             return "arch-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self._arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|  | ||||
|     @property | ||||
|     def random(self): | ||||
|         cs = [] | ||||
|         for i in range(self._max_num_Cs): | ||||
|             index = random.randint(0, len(self._candidate_Cs) - 1) | ||||
|             cs.append(str(self._candidate_Cs[index])) | ||||
|         return ":".join(cs) | ||||
|  | ||||
|     @property | ||||
|     def genotype(self): | ||||
|         cs = [] | ||||
|         for i in range(self._max_num_Cs): | ||||
|             with torch.no_grad(): | ||||
|                 index = self._arch_parameters[i].argmax().item() | ||||
|                 cs.append(str(self._candidate_Cs[index])) | ||||
|         return ":".join(cs) | ||||
|  | ||||
|     def get_message(self) -> Text: | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self._cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self._cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         feature = inputs | ||||
|  | ||||
|         log_probs = [] | ||||
|         for i, cell in enumerate(self._cells): | ||||
|             feature = cell(feature) | ||||
|             # apply different searching algorithms | ||||
|             idx = max(0, i - 1) | ||||
|             if self._warmup_ratio is not None: | ||||
|                 if random.random() < self._warmup_ratio: | ||||
|                     mask = self._masks[-1] | ||||
|                 else: | ||||
|                     mask = self._masks[random.randint(0, len(self._masks) - 1)] | ||||
|                 feature = feature * mask.view(1, -1, 1, 1) | ||||
|             elif self._algo == "mask_gumbel": | ||||
|                 weights = nn.functional.gumbel_softmax( | ||||
|                     self._arch_parameters[idx : idx + 1], tau=self.tau, dim=-1 | ||||
|                 ) | ||||
|                 mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1) | ||||
|                 feature = feature * mask | ||||
|             elif self._algo == "tas": | ||||
|                 selected_cs, selected_probs = select2withP( | ||||
|                     self._arch_parameters[idx : idx + 1], self.tau, num=2 | ||||
|                 ) | ||||
|                 with torch.no_grad(): | ||||
|                     i1, i2 = selected_cs.cpu().view(-1).tolist() | ||||
|                 c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2] | ||||
|                 out_channel = max(c1, c2) | ||||
|                 out1 = ChannelWiseInter(feature[:, :c1], out_channel) | ||||
|                 out2 = ChannelWiseInter(feature[:, :c2], out_channel) | ||||
|                 out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1] | ||||
|                 if feature.shape[1] == out.shape[1]: | ||||
|                     feature = out | ||||
|                 else: | ||||
|                     miss = torch.zeros( | ||||
|                         feature.shape[0], | ||||
|                         feature.shape[1] - out.shape[1], | ||||
|                         feature.shape[2], | ||||
|                         feature.shape[3], | ||||
|                         device=feature.device, | ||||
|                     ) | ||||
|                     feature = torch.cat((out, miss), dim=1) | ||||
|             elif self._algo == "mask_rl": | ||||
|                 prob = nn.functional.softmax( | ||||
|                     self._arch_parameters[idx : idx + 1], dim=-1 | ||||
|                 ) | ||||
|                 dist = torch.distributions.Categorical(prob) | ||||
|                 action = dist.sample() | ||||
|                 log_probs.append(dist.log_prob(action)) | ||||
|                 mask = self._masks[action.item()].view(1, -1, 1, 1) | ||||
|                 feature = feature * mask | ||||
|             else: | ||||
|                 raise ValueError("invalid algorithm : {:}".format(self._algo)) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits, log_probs | ||||
							
								
								
									
										
											BIN
										
									
								
								correlation/result/sss_cf100_meco.p
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								correlation/result/sss_cf100_meco.p
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								correlation/result/sss_cf100_meco_opt.p
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								correlation/result/sss_cf100_meco_opt.p
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								correlation/result/sss_cf10_meco.p
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								correlation/result/sss_cf10_meco.p
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								correlation/result/sss_cf10_meco_opt.p
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								correlation/result/sss_cf10_meco_opt.p
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								correlation/result/sss_im120_meco.p
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								correlation/result/sss_im120_meco.p
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								correlation/result/sss_im120_meco_opt.p
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								correlation/result/sss_im120_meco_opt.p
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
		Reference in New Issue
	
	Block a user