This commit is contained in:
HamsterMimi 2023-05-14 10:57:08 +08:00
parent a37e99a057
commit 993d55076e
4 changed files with 281 additions and 1 deletions

View File

@ -0,0 +1,76 @@
# Copyright 2021 Samsung Electronics Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import torch
from torch import nn
import numpy as np
from . import measure
def get_flattened_metric(net, metric):
grad_list = []
for layer in net.modules():
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
grad_list.append(metric(layer).flatten())
flattened_grad = np.concatenate(grad_list)
return flattened_grad
def get_grad_conflict(net, inputs, targets, loss_fn):
N = inputs.shape[0]
batch_grad = []
for i in range(N):
net.zero_grad()
outputs = net.forward(inputs[[i]])
loss = loss_fn(outputs, targets[[i]])
loss.backward()
flattened_grad = get_flattened_metric(net, lambda
l: l.weight.grad.data.clone().cpu().numpy() if l.weight.grad is not None else torch.zeros_like(
l.weight).clone().cpu().numpy())
batch_grad.append(flattened_grad)
batch_grad = np.stack(batch_grad)
direction_code = np.sign(batch_grad)
direction_code = abs(direction_code.sum(axis=0))
score = np.nansum(direction_code)
return score
def get_gradsign(input, target, net, device, loss_fn):
s = []
net = net.to(device)
x, target = input, target
# x2 = torch.clone(x)
# x2 = x2.to(device)
x, target = x.to(device), target.to(device)
s.append(get_grad_conflict(net=net, inputs=x, targets=target, loss_fn=loss_fn))
s = np.mean(s)
return s
@measure('gradsign', bn=True)
def compute_gradsign(net, inputs, targets, split_data=1, loss_fn=None):
device = inputs.device
# Compute gradients (but don't apply them)
net.zero_grad()
try:
gradsign = get_gradsign(inputs, targets, net, device, loss_fn)
except Exception as e:
print(e)
gradsign= np.nan
return gradsign

View File

@ -0,0 +1,94 @@
# Copyright 2021 Samsung Electronics Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import torch
import numpy as np
from . import measure
def recal_bn(network, inputs, targets, recalbn, device):
for m in network.modules():
if isinstance(m, torch.nn.BatchNorm2d):
m.running_mean.data.fill_(0)
m.running_var.data.fill_(0)
m.num_batches_tracked.data.zero_()
m.momentum = None
network.train()
with torch.no_grad():
for i, (inputs, targets) in enumerate(zip(inputs, targets)):
if i >= recalbn: break
inputs = inputs.cuda(device=device, non_blocking=True)
_, _ = network(inputs)
return network
def get_ntk_n(inputs, targets, network, device, recalbn=0, train_mode=False, num_batch=1):
device = device
# if recalbn > 0:
# network = recal_bn(network, xloader, recalbn, device)
# if network_2 is not None:
# network_2 = recal_bn(network_2, xloader, recalbn, device)
network.eval()
networks = []
networks.append(network)
ntks = []
# if train_mode:
# networks.train()
# else:
# networks.eval()
######
grads = [[] for _ in range(len(networks))]
for i in range(num_batch):
if num_batch > 0 and i >= num_batch: break
inputs = inputs.cuda(device=device, non_blocking=True)
for net_idx, network in enumerate(networks):
network.zero_grad()
# print(inputs.size())
inputs_ = inputs.clone().cuda(device=device, non_blocking=True)
logit = network(inputs_)
if isinstance(logit, tuple):
logit = logit[1] # 201 networks: return features and logits
for _idx in range(len(inputs_)):
logit[_idx:_idx + 1].backward(torch.ones_like(logit[_idx:_idx + 1]), retain_graph=True)
grad = []
for name, W in network.named_parameters():
if 'weight' in name and W.grad is not None:
grad.append(W.grad.view(-1).detach())
grads[net_idx].append(torch.cat(grad, -1))
network.zero_grad()
torch.cuda.empty_cache()
######
grads = [torch.stack(_grads, 0) for _grads in grads]
ntks = [torch.einsum('nc,mc->nm', [_grads, _grads]) for _grads in grads]
for ntk in ntks:
eigenvalues, _ = torch.linalg.eigh(ntk) # ascending
conds = np.nan_to_num((eigenvalues[0] / eigenvalues[-1]).item(), copy=True, nan=100000.0)
return conds
@measure('ntk', bn=True)
def compute_ntk(net, inputs, targets, split_data=1, loss_fn=None):
device = inputs.device
# Compute gradients (but don't apply them)
net.zero_grad()
try:
conds = get_ntk_n(inputs, targets, net, device)
except Exception as e:
print(e)
conds= np.nan
return conds

View File

@ -0,0 +1,110 @@
# Copyright 2021 Samsung Electronics Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import torch
from torch import nn
import numpy as np
from . import measure
def network_weight_gaussian_init(net: nn.Module):
with torch.no_grad():
for n, m in net.named_modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
try:
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
except:
pass
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.zeros_(m.bias)
else:
continue
return net
def get_zen(gpu, model, mixup_gamma=1e-2, resolution=32, batch_size=64, repeat=32,
fp16=False):
info = {}
nas_score_list = []
if gpu is not None:
device = torch.device(gpu)
else:
device = torch.device('cpu')
if fp16:
dtype = torch.half
else:
dtype = torch.float32
with torch.no_grad():
for repeat_count in range(repeat):
network_weight_gaussian_init(model)
input = torch.randn(size=[batch_size, 3, resolution, resolution], device=device, dtype=dtype)
input2 = torch.randn(size=[batch_size, 3, resolution, resolution], device=device, dtype=dtype)
mixup_input = input + mixup_gamma * input2
output = model.forward_pre_GAP(input)
mixup_output = model.forward_pre_GAP(mixup_input)
nas_score = torch.sum(torch.abs(output - mixup_output), dim=[1, 2, 3])
nas_score = torch.mean(nas_score)
# compute BN scaling
log_bn_scaling_factor = 0.0
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
try:
bn_scaling_factor = torch.sqrt(torch.mean(m.running_var))
log_bn_scaling_factor += torch.log(bn_scaling_factor)
except:
pass
pass
pass
nas_score = torch.log(nas_score) + log_bn_scaling_factor
nas_score_list.append(float(nas_score))
std_nas_score = np.std(nas_score_list)
avg_precision = 1.96 * std_nas_score / np.sqrt(len(nas_score_list))
avg_nas_score = np.mean(nas_score_list)
info = float(avg_nas_score)
return info
@measure('zen', bn=True)
def compute_zen(net, inputs, targets, split_data=1, loss_fn=None):
device = inputs.device
# Compute gradients (but don't apply them)
net.zero_grad()
try:
zen = get_zen(device,net)
except Exception as e:
print(e)
zen= np.nan
return zen

View File

@ -108,7 +108,7 @@ def find_measures(net_orig, # neural network
measures = {}
for k,v in measures_arr.items():
if k in ['jacob_cov', 'meco', 'zico']:
if k in ['jacob_cov', 'var', 'cor', 'norm', 'meco', 'zico', 'ntk', 'gradsign', 'zen']:
measures[k] = v
else:
measures[k] = sum_arr(v)