add how to prepare dataset

This commit is contained in:
Hanzhang Ma 2024-11-26 20:49:35 +01:00
parent a6e411a94b
commit cd80aa277c

View File

@ -0,0 +1,139 @@
# import torch
# import torchvision
# import torchvision.transforms as transforms
# # 加载CIFAR-10数据集
# transform = transforms.Compose([transforms.ToTensor()])
# trainset = torchvision.datasets.CIFAR10(root='./datasets', train=True, download=True, transform=transform)
# trainloader = torch.utils.data.DataLoader(trainset, batch_size=10000, shuffle=False, num_workers=2)
# # 将所有数据加载到内存中
# data = next(iter(trainloader))
# images, _ = data
# # 计算每个通道的均值和标准差
# mean = images.mean([0, 2, 3])
# std = images.std([0, 2, 3])
# print(f'Mean: {mean}')
# print(f'Std: {std}')
# results:
# Mean: tensor([0.4935, 0.4834, 0.4472])
# Std: tensor([0.2476, 0.2446, 0.2626])
import itertools
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, TensorDataset
import argparse
import numpy as np
import os
parser = argparse.ArgumentParser(description='Calculate mean and std of dataset')
parser.add_argument('--dataset', type=str, default='cifar10', help='dataset name')
parser.add_argument('--data_path', type=str, default='./datasets/cifar-10-batches-py', help='path to dataset image folder')
parser.add_argument('--train_dataset_path', type=str, default='train', help='train dataset path')
parser.add_argument('--test_dataset_path', type=str, default='test', help='test dataset path')
args = parser.parse_args()
# 设置数据集路径
dataset_path = args.data_path
dataset_name = args.dataset
if dataset_name == 'cifar10':
transform = transforms.Compose([
transforms.ToTensor()
])
elif dataset_name == 'aircraft' or dataset_name == 'oxford':
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
def to_tensor(pic):
"""Convert a PIL Image to a PyTorch tensor.
Args:
pic (PIL.Image.Image): Image to be converted to tensor.
Returns:
Tensor: Converted image tensor with shape (C, H, W) and pixel values in range [0.0, 1.0].
"""
# Convert the image to a NumPy array
img = np.array(pic, dtype=np.float32)
# If image has an alpha channel, discard it
if img.shape[-1] == 4:
img = img[:, :, :3]
# Handle grayscale images (no channels dimension)
if len(img.shape) == 2:
img = np.expand_dims(img, axis=-1)
# Transpose the dimensions from (H, W, C) to (C, H, W)
img = img.transpose((2, 0, 1))
# Normalize the pixel values to [0.0, 1.0]
img = img / 255.0
# Convert the NumPy array to a PyTorch tensor
tensor = torch.from_numpy(img)
return tensor
# 使用ImageFolder加载数据集
if args.dataset == 'oxford':
train_data = torch.load(os.path.join(dataset_path, args.train_dataset_path))
test_data = torch.load(os.path.join(dataset_path, args.test_dataset_path))
train_tensor_data = [(image, label) for image, label in train_data]
test_tensor_data = [(image, label) for image, label in test_data]
sum_data = train_tensor_data + test_tensor_data
train_images = [image for image, label in train_tensor_data]
train_labels = torch.tensor([label for image, label in train_tensor_data])
test_images = [image for image, label in test_tensor_data]
test_labels = torch.tensor([label for image, label in test_tensor_data])
sum_images = [image for image, label in sum_data]
sum_labels = torch.tensor([label for image, label in sum_data])
train_tensors = torch.stack([transform(image) for image in train_images])
test_tensors = torch.stack([transform(image) for image in test_images])
sum_tensors = torch.stack([transform(image) for image in sum_images])
train_dataset = TensorDataset(train_tensors, train_labels)
test_dataset = TensorDataset(test_tensors, test_labels)
sum_dataset = TensorDataset(sum_tensors, sum_labels)
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=False, num_workers=4)
test_dataloader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)
dataloader = DataLoader(sum_dataset, batch_size=64, shuffle=False, num_workers=4)
else:
dataset = datasets.ImageFolder(root=dataset_path, transform=transform)
dataloader = DataLoader(dataset, batch_size=64, shuffle=False, num_workers=4)
# 初始化变量来累积均值和标准差
mean = torch.zeros(3)
std = torch.zeros(3)
nb_samples = 0
count = 0
for data in dataloader:
count += 1
print(f'Processing batch {count}/{len(dataloader)}', end='\r')
batch_samples = data[0].size(0)
data = data[0].view(batch_samples, data[0].size(1), -1)
mean += data.mean(2).sum(0)
std += data.std(2).sum(0)
nb_samples += batch_samples
mean /= nb_samples
std /= nb_samples
print(f'Mean: {mean}')
print(f'Std: {std}')