update
This commit is contained in:
parent
189df25fd3
commit
fd43e67da1
@ -96,20 +96,6 @@ def project_op(model, input, target, args, cell_type, proj_queue=None, selected_
|
||||
|
||||
model.candidate_flags[cell_type][selected_eid] = False
|
||||
# print(model.get_projected_weights())
|
||||
if proj_crit == 'comb':
|
||||
synflow = predictive.find_measures(model,
|
||||
proj_queue,
|
||||
('random', 1, n_classes),
|
||||
torch.device("cuda"),
|
||||
measure_names=['synflow'])
|
||||
var = predictive.find_measures(model,
|
||||
proj_queue,
|
||||
('random', 1, n_classes),
|
||||
torch.device("cuda"),
|
||||
measure_names=['var'])
|
||||
# print(synflow, var)
|
||||
comb = np.log(synflow['synflow'] + 1) / (var['var'] + 0.1)
|
||||
measures = {'comb': comb}
|
||||
else:
|
||||
measures = predictive.find_measures(model,
|
||||
proj_queue,
|
||||
|
@ -55,9 +55,6 @@ def load_all():
|
||||
from . import jacob_cov
|
||||
from . import plain
|
||||
from . import synflow
|
||||
from . import var
|
||||
from . import cor
|
||||
from . import norm
|
||||
from . import meco
|
||||
from . import zico
|
||||
|
||||
|
@ -1,53 +0,0 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
def forward_hook(module, data_input, data_output):
|
||||
corr = np.mean(np.corrcoef(data_input[0].detach().cpu().numpy()))
|
||||
result_list.append(corr)
|
||||
net.classifier.register_forward_hook(forward_hook)
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
cor = result_list[0].item()
|
||||
result_list.clear()
|
||||
return cor
|
||||
|
||||
|
||||
|
||||
@measure('cor', bn=True)
|
||||
def compute_norm(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
try:
|
||||
cor= get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
cor= np.nan
|
||||
|
||||
return cor
|
@ -1,55 +0,0 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
def forward_hook(module, data_input, data_output):
|
||||
norm = torch.norm(data_input[0])
|
||||
result_list.append(norm)
|
||||
net.classifier.register_forward_hook(forward_hook)
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
n = result_list[0].item()
|
||||
result_list.clear()
|
||||
return n
|
||||
|
||||
|
||||
|
||||
@measure('norm', bn=True)
|
||||
def compute_norm(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
# print('var:', feature.shape)
|
||||
try:
|
||||
norm, t = get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
norm, t = np.nan, None
|
||||
# print(jc)
|
||||
# print(f'norm time: {t} s')
|
||||
return norm, t
|
@ -1,16 +0,0 @@
|
||||
import time
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
|
||||
|
||||
@measure('param_count', copy_net=False, mode='param')
|
||||
def get_param_count_array(net, inputs, targets, mode, loss_fn, split_data=1):
|
||||
s = time.time()
|
||||
count = get_layer_metric_array(net, lambda l: torch.tensor(sum(p.numel() for p in l.parameters() if p.requires_grad)), mode=mode)
|
||||
e = time.time()
|
||||
t = e - s
|
||||
# print(f'param_count time: {t} s')
|
||||
return count, t
|
@ -1,55 +0,0 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
def forward_hook(module, data_input, data_output):
|
||||
var = torch.var(data_input[0])
|
||||
result_list.append(var)
|
||||
net.classifier.register_forward_hook(forward_hook)
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
v = result_list[0].item()
|
||||
result_list.clear()
|
||||
return v
|
||||
|
||||
|
||||
|
||||
@measure('var', bn=True)
|
||||
def compute_var(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
# print('var:', feature.shape)
|
||||
try:
|
||||
var= get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
var= np.nan
|
||||
# print(jc)
|
||||
# print(f'var time: {t} s')
|
||||
return var
|
@ -108,7 +108,7 @@ def find_measures(net_orig, # neural network
|
||||
|
||||
measures = {}
|
||||
for k,v in measures_arr.items():
|
||||
if k in ['jacob_cov', 'var', 'cor', 'norm', 'meco', 'zico']:
|
||||
if k in ['jacob_cov', 'meco', 'zico']:
|
||||
measures[k] = v
|
||||
else:
|
||||
measures[k] = sum_arr(v)
|
||||
|
@ -223,20 +223,6 @@ def main():
|
||||
else:
|
||||
#score = score_loop(network, None, train_queue, args.gpu, None, args.proj_crit)
|
||||
network.requires_feature = False
|
||||
|
||||
if args.proj_crit == 'comb':
|
||||
synflow = predictive.find_measures(network,
|
||||
train_queue,
|
||||
('random', 1, n_classes),
|
||||
torch.device("cuda"),
|
||||
measure_names=['synflow'])
|
||||
var = predictive.find_measures(network,
|
||||
train_queue,
|
||||
('random', 1, n_classes),
|
||||
torch.device("cuda"),
|
||||
measure_names=['var'])
|
||||
comb = np.log(synflow['synflow'] + 1) / (var['var'] + 0.1)
|
||||
measures = {'comb': comb}
|
||||
else:
|
||||
measures = predictive.find_measures(network,
|
||||
train_queue,
|
||||
|
Loading…
Reference in New Issue
Block a user