322 lines
12 KiB
Python
322 lines
12 KiB
Python
import sys
|
|
sys.path.insert(0, '../../')
|
|
import numpy as np
|
|
import torch
|
|
import logging
|
|
import torch.utils
|
|
from copy import deepcopy
|
|
from foresight.pruners import *
|
|
|
|
torch.set_printoptions(precision=4, sci_mode=False)
|
|
|
|
def sample_op(model, input, target, args, cell_type, selected_eid=None):
|
|
''' operation '''
|
|
#### macros
|
|
num_edges, num_ops = model.num_edges, model.num_ops
|
|
candidate_flags = model.candidate_flags[cell_type]
|
|
proj_crit = args.proj_crit[cell_type]
|
|
|
|
#### select an edge
|
|
if selected_eid is None:
|
|
remain_eids = torch.nonzero(candidate_flags).cpu().numpy().T[0]
|
|
selected_eid = np.random.choice(remain_eids, size=1)[0]
|
|
logging.info('selected edge: %d %s', selected_eid, cell_type)
|
|
|
|
select_opid = np.random.choice(np.array(range(num_ops)), size=1)[0]
|
|
return selected_eid, select_opid
|
|
|
|
def project_op(model, input, target, args, cell_type, proj_queue=None, selected_eid=None):
|
|
''' operation '''
|
|
#### macros
|
|
num_edges, num_ops = model.num_edges, model.num_ops
|
|
candidate_flags = model.candidate_flags[cell_type]
|
|
proj_crit = args.proj_crit[cell_type]
|
|
|
|
#### select an edge
|
|
if selected_eid is None:
|
|
remain_eids = torch.nonzero(candidate_flags).cpu().numpy().T[0]
|
|
# print(num_edges, num_ops, remain_eids)
|
|
if args.edge_decision == "random":
|
|
selected_eid = np.random.choice(remain_eids, size=1)[0]
|
|
logging.info('selected edge: %d %s', selected_eid, cell_type)
|
|
elif args.edge_decision == 'reverse':
|
|
selected_eid = remain_eids[-1]
|
|
logging.info('selected edge: %d %s', selected_eid, cell_type)
|
|
else:
|
|
selected_eid = remain_eids[0]
|
|
logging.info('selected node: %d %s', selected_eid, cell_type)
|
|
|
|
#### select the best operation
|
|
if proj_crit == 'jacob':
|
|
crit_idx = 3
|
|
compare = lambda x, y: x < y
|
|
else:
|
|
crit_idx = 0
|
|
compare = lambda x, y: x < y
|
|
|
|
if args.dataset == 'cifar100':
|
|
n_classes = 100
|
|
elif args.dataset == 'imagenet16-120':
|
|
n_classes = 120
|
|
else:
|
|
n_classes = 10
|
|
|
|
best_opid = 0
|
|
crit_extrema = None
|
|
crit_list = []
|
|
op_ids = []
|
|
for opid in range(num_ops):
|
|
## projection
|
|
weights = model.get_projected_weights(cell_type)
|
|
proj_mask = torch.ones_like(weights[selected_eid])
|
|
proj_mask[opid] = 0
|
|
weights[selected_eid] = weights[selected_eid] * proj_mask
|
|
|
|
# ## proj evaluation
|
|
# with torch.no_grad():
|
|
# valid_stats = Jocab_Score(model, cell_type, input, target, weights=weights)
|
|
# crit = valid_stats
|
|
# crit_list.append(crit)
|
|
# if crit_extrema is None or compare(crit, crit_extrema):
|
|
# crit_extrema = crit
|
|
# best_opid = opid
|
|
|
|
## proj evaluation
|
|
if proj_crit == 'jacob':
|
|
crit = Jocab_Score(model,cell_type, input, target, weights=weights)
|
|
else:
|
|
cache_weight = model.proj_weights[cell_type][selected_eid]
|
|
cache_flag = model.candidate_flags[cell_type][selected_eid]
|
|
|
|
for idx in range(num_ops):
|
|
if idx == opid:
|
|
model.proj_weights[cell_type][selected_eid][opid] = 0
|
|
else:
|
|
model.proj_weights[cell_type][selected_eid][idx] = 1.0 / num_ops
|
|
|
|
model.candidate_flags[cell_type][selected_eid] = False
|
|
# print(model.get_projected_weights())
|
|
else:
|
|
measures = predictive.find_measures(model,
|
|
proj_queue,
|
|
('random', 1, n_classes),
|
|
torch.device("cuda"),
|
|
measure_names=[proj_crit])
|
|
|
|
# print(measures)
|
|
for idx in range(num_ops):
|
|
model.proj_weights[cell_type][selected_eid][idx] = 0
|
|
model.candidate_flags[cell_type][selected_eid] = cache_flag
|
|
crit = measures[proj_crit]
|
|
|
|
crit_list.append(crit)
|
|
op_ids.append(opid)
|
|
|
|
best_opid = op_ids[np.nanargmin(crit_list)]
|
|
|
|
|
|
|
|
#### project
|
|
logging.info('best opid: %d', best_opid)
|
|
logging.info(crit_list)
|
|
return selected_eid, best_opid
|
|
|
|
def project_global_op(model, input, target, args, infer, cell_type, selected_eid=None):
|
|
''' operation '''
|
|
#### macros
|
|
num_edges, num_ops = model.num_edges, model.num_ops
|
|
candidate_flags = model.candidate_flags[cell_type]
|
|
proj_crit = args.proj_crit[cell_type]
|
|
|
|
remain_eids = torch.nonzero(candidate_flags).cpu().numpy().T[0]
|
|
|
|
#### select the best operation
|
|
if proj_crit == 'jacob':
|
|
crit_idx = 3
|
|
compare = lambda x, y: x < y
|
|
|
|
best_opid = 0
|
|
crit_extrema = None
|
|
best_eid = None
|
|
for eid in remain_eids:
|
|
for opid in range(num_ops):
|
|
## projection
|
|
weights = model.get_projected_weights(cell_type)
|
|
proj_mask = torch.ones_like(weights[eid])
|
|
proj_mask[opid] = 0
|
|
weights[eid] = weights[eid] * proj_mask
|
|
|
|
## proj evaluation
|
|
|
|
#weights_dict = {cell_type:weights}
|
|
with torch.no_grad():
|
|
valid_stats = Jocab_Score(model, cell_type, input, target, weights=weights)
|
|
crit = valid_stats
|
|
if crit_extrema is None or compare(crit, crit_extrema):
|
|
crit_extrema = crit
|
|
best_opid = opid
|
|
best_eid = eid
|
|
|
|
#### project
|
|
logging.info('best opid: %d', best_opid)
|
|
#logging.info(crit_list)
|
|
return best_eid, best_opid
|
|
|
|
def sample_edge(model, input, target, args, cell_type, selected_eid=None):
|
|
''' topology '''
|
|
#### macros
|
|
candidate_flags = model.candidate_flags_edge[cell_type]
|
|
proj_crit = args.proj_crit[cell_type]
|
|
|
|
#### select an node
|
|
remain_nids = torch.nonzero(candidate_flags).cpu().numpy().T[0]
|
|
selected_nid = np.random.choice(remain_nids, size=1)[0]
|
|
logging.info('selected node: %d %s', selected_nid, cell_type)
|
|
|
|
eids = deepcopy(model.nid2eids[selected_nid])
|
|
|
|
while len(eids) > 2:
|
|
elected_eid = np.random.choice(eids, size=1)[0]
|
|
eids.remove(elected_eid)
|
|
|
|
return selected_nid, eids
|
|
|
|
def project_edge(model, input, target, args, cell_type):
|
|
''' topology '''
|
|
#### macros
|
|
candidate_flags = model.candidate_flags_edge[cell_type]
|
|
proj_crit = args.proj_crit[cell_type]
|
|
|
|
#### select an node
|
|
remain_nids = torch.nonzero(candidate_flags).cpu().numpy().T[0]
|
|
if args.edge_decision == "random":
|
|
selected_nid = np.random.choice(remain_nids, size=1)[0]
|
|
logging.info('selected node: %d %s', selected_nid, cell_type)
|
|
elif args.edge_decision == 'reverse':
|
|
selected_nid = remain_nids[-1]
|
|
logging.info('selected node: %d %s', selected_nid, cell_type)
|
|
else:
|
|
selected_nid = np.random.choice(remain_nids, size=1)[0]
|
|
logging.info('selected node: %d %s', selected_nid, cell_type)
|
|
|
|
#### select top2 edges
|
|
if proj_crit == 'jacob':
|
|
crit_idx = 3
|
|
compare = lambda x, y: x < y
|
|
else:
|
|
crit_idx = 3
|
|
compare = lambda x, y: x < y
|
|
|
|
eids = deepcopy(model.nid2eids[selected_nid])
|
|
crit_list = []
|
|
while len(eids) > 2:
|
|
eid_todel = None
|
|
crit_extrema = None
|
|
for eid in eids:
|
|
weights = model.get_projected_weights(cell_type)
|
|
weights[eid].data.fill_(0)
|
|
|
|
## proj evaluation
|
|
with torch.no_grad():
|
|
valid_stats = Jocab_Score(model, cell_type, input, target, weights=weights)
|
|
crit = valid_stats
|
|
|
|
crit_list.append(crit)
|
|
if crit_extrema is None or not compare(crit, crit_extrema): # find out bad edges
|
|
crit_extrema = crit
|
|
eid_todel = eid
|
|
|
|
eids.remove(eid_todel)
|
|
|
|
#### project
|
|
logging.info('top2 edges: (%d, %d)', eids[0], eids[1])
|
|
#logging.info(crit_list)
|
|
return selected_nid, eids
|
|
|
|
|
|
def pt_project(train_queue, model, args):
|
|
model.eval()
|
|
|
|
#### macros
|
|
num_projs = model.num_edges + len(model.nid2eids.keys())
|
|
args.proj_crit = {'normal':args.proj_crit_normal, 'reduce':args.proj_crit_reduce}
|
|
proj_queue = train_queue
|
|
|
|
epoch = 0
|
|
for step, (input, target) in enumerate(proj_queue):
|
|
if epoch < model.num_edges:
|
|
logging.info('project op')
|
|
|
|
if args.edge_decision == 'global_op_greedy':
|
|
selected_eid_normal, best_opid_normal = project_global_op(model, input, target, args, cell_type='normal')
|
|
elif args.edge_decision == 'sample':
|
|
selected_eid_normal, best_opid_normal = sample_op(model, input, target, args, cell_type='normal')
|
|
else:
|
|
selected_eid_normal, best_opid_normal = project_op(model, input, target, args, proj_queue=proj_queue, cell_type='normal')
|
|
model.project_op(selected_eid_normal, best_opid_normal, cell_type='normal')
|
|
if args.edge_decision == 'global_op_greedy':
|
|
selected_eid_reduce, best_opid_reduce = project_global_op(model, input, target, args, cell_type='reduce')
|
|
elif args.edge_decision == 'sample':
|
|
selected_eid_reduce, best_opid_reduce = sample_op(model, input, target, args, cell_type='reduce')
|
|
else:
|
|
selected_eid_reduce, best_opid_reduce = project_op(model, input, target, args, proj_queue=proj_queue, cell_type='reduce')
|
|
model.project_op(selected_eid_reduce, best_opid_reduce, cell_type='reduce')
|
|
|
|
else:
|
|
logging.info('project edge')
|
|
if args.edge_decision == 'sample':
|
|
selected_nid_normal, eids_normal = sample_edge(model, input, target, args, cell_type='normal')
|
|
model.project_edge(selected_nid_normal, eids_normal, cell_type='normal')
|
|
selected_nid_reduce, eids_reduce = sample_edge(model, input, target, args, cell_type='reduce')
|
|
model.project_edge(selected_nid_reduce, eids_reduce, cell_type='reduce')
|
|
else:
|
|
selected_nid_normal, eids_normal = project_edge(model, input, target, args, cell_type='normal')
|
|
model.project_edge(selected_nid_normal, eids_normal, cell_type='normal')
|
|
selected_nid_reduce, eids_reduce = project_edge(model, input, target, args, cell_type='reduce')
|
|
model.project_edge(selected_nid_reduce, eids_reduce, cell_type='reduce')
|
|
epoch+=1
|
|
|
|
if epoch == num_projs:
|
|
break
|
|
|
|
return
|
|
|
|
def Jocab_Score(ori_model, cell_type, input, target, weights=None):
|
|
model = deepcopy(ori_model)
|
|
model.eval()
|
|
if cell_type == 'reduce':
|
|
model.proj_weights['reduce'] = weights
|
|
model.proj_weights['normal'] = model.get_projected_weights('normal')
|
|
else:
|
|
model.proj_weights['normal'] = weights
|
|
model.proj_weights['reduce'] = model.get_projected_weights('reduce')
|
|
|
|
batch_size = input.shape[0]
|
|
model.K = torch.zeros(batch_size, batch_size).cuda()
|
|
def counting_forward_hook(module, inp, out):
|
|
try:
|
|
if isinstance(inp, tuple):
|
|
inp = inp[0]
|
|
inp = inp.view(inp.size(0), -1)
|
|
x = (inp > 0).float()
|
|
K = x @ x.t()
|
|
K2 = (1.-x) @ (1.-x.t())
|
|
model.K = model.K + K + K2
|
|
except:
|
|
pass
|
|
|
|
for name, module in model.named_modules():
|
|
if 'ReLU' in str(type(module)):
|
|
module.register_forward_hook(counting_forward_hook)
|
|
|
|
input = input.cuda()
|
|
|
|
model(input, using_proj=True)
|
|
score = hooklogdet(model.K.cpu().numpy())
|
|
|
|
del model
|
|
return score
|
|
|
|
def hooklogdet(K, labels=None):
|
|
s, ld = np.linalg.slogdet(K)
|
|
return ld |