MeCo/correlation/foresight/pruners/measures/grasp.py
HamsterMimi 3f6d16e791 update
2024-01-23 10:08:45 +08:00

87 lines
3.2 KiB
Python

# Copyright 2021 Samsung Electronics Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
from . import measure
from ..p_utils import get_layer_metric_array
@measure('grasp', bn=True, mode='param')
def compute_grasp_per_weight(net, inputs, targets, mode, loss_fn, T=1, num_iters=1, split_data=1):
# get all applicable weights
weights = []
for layer in net.modules():
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
weights.append(layer.weight)
layer.weight.requires_grad_(True) # TODO isn't this already true?
# NOTE original code had some input/target splitting into 2
# I am guessing this was because of GPU mem limit
net.zero_grad()
N = inputs.shape[0]
for sp in range(split_data):
st=sp*N//split_data
en=(sp+1)*N//split_data
#forward/grad pass #1
grad_w = None
for _ in range(num_iters):
#TODO get new data, otherwise num_iters is useless!
outputs = net.forward(inputs[st:en])/T
loss = loss_fn(outputs, targets[st:en])
grad_w_p = autograd.grad(loss, weights, allow_unused=True)
if grad_w is None:
grad_w = list(grad_w_p)
else:
for idx in range(len(grad_w)):
grad_w[idx] += grad_w_p[idx]
for sp in range(split_data):
st=sp*N//split_data
en=(sp+1)*N//split_data
# forward/grad pass #2
outputs = net.forward(inputs[st:en])/T
loss = loss_fn(outputs, targets[st:en])
grad_f = autograd.grad(loss, weights, create_graph=True, allow_unused=True)
# accumulate gradients computed in previous step and call backwards
z, count = 0,0
for layer in net.modules():
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
if grad_w[count] is not None:
z += (grad_w[count].data * grad_f[count]).sum()
count += 1
z.backward()
# compute final sensitivity metric and put in grads
def grasp(layer):
if layer.weight.grad is not None:
return -layer.weight.data * layer.weight.grad # -theta_q Hg
#NOTE in the grasp code they take the *bottom* (1-p)% of values
#but we take the *top* (1-p)%, therefore we remove the -ve sign
#EDIT accuracy seems to be negatively correlated with this metric, so we add -ve sign here!
else:
return torch.zeros_like(layer.weight)
grads = get_layer_metric_array(net, grasp, mode)
return grads