74 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2021 Samsung Electronics Co., Ltd.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
import copy
 | 
						|
import time
 | 
						|
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
# =============================================================================
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from torch import nn
 | 
						|
 | 
						|
from . import measure
 | 
						|
 | 
						|
 | 
						|
def get_score(net, x, target, device, split_data):
 | 
						|
    result_list = []
 | 
						|
    x = torch.randn(size=(1, 3, 64, 64)).to(device)
 | 
						|
    net.to(device)
 | 
						|
    def forward_hook(module, data_input, data_output):
 | 
						|
 | 
						|
        fea = data_output[0].detach()
 | 
						|
        fea = fea.reshape(fea.shape[0], -1)
 | 
						|
        n = fea.shape[0]
 | 
						|
        corr = torch.corrcoef(fea)
 | 
						|
        corr[torch.isnan(corr)] = 0
 | 
						|
        corr[torch.isinf(corr)] = 0
 | 
						|
        values = torch.linalg.eig(corr)[0]
 | 
						|
        # result = np.real(np.min(values)) / np.real(np.max(values))
 | 
						|
        result = torch.min(torch.real(values))
 | 
						|
        result_list.append(result)
 | 
						|
 | 
						|
    for name, modules in net.named_modules():
 | 
						|
        modules.register_forward_hook(forward_hook)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    N = x.shape[0]
 | 
						|
    for sp in range(split_data):
 | 
						|
        st = sp * N // split_data
 | 
						|
        en = (sp + 1) * N // split_data
 | 
						|
        y = net(x[st:en])
 | 
						|
        # break
 | 
						|
    results = torch.tensor(result_list)
 | 
						|
    results = results[torch.logical_not(torch.isnan(results))]
 | 
						|
    v = torch.sum(results)
 | 
						|
    result_list.clear()
 | 
						|
    return v.item()
 | 
						|
 | 
						|
 | 
						|
 | 
						|
@measure('meco', bn=True)
 | 
						|
def compute_meco(net, inputs, targets, split_data=1, loss_fn=None):
 | 
						|
    device = inputs.device
 | 
						|
    # Compute gradients (but don't apply them)
 | 
						|
    net.zero_grad()
 | 
						|
 | 
						|
 | 
						|
    try:
 | 
						|
        meco = get_score(net, inputs, targets, device, split_data=split_data)
 | 
						|
    except Exception as e:
 | 
						|
        print(e)
 | 
						|
        meco = np.nan, None
 | 
						|
    return meco
 |