70 lines
2.3 KiB
Python
70 lines
2.3 KiB
Python
# Copyright 2021 Samsung Electronics Co., Ltd.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# =============================================================================
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
import copy
|
|
import types
|
|
|
|
from . import measure
|
|
from ..p_utils import get_layer_metric_array
|
|
|
|
|
|
def snip_forward_conv2d(self, x):
|
|
return F.conv2d(x, self.weight * self.weight_mask, self.bias,
|
|
self.stride, self.padding, self.dilation, self.groups)
|
|
|
|
def snip_forward_linear(self, x):
|
|
return F.linear(x, self.weight * self.weight_mask, self.bias)
|
|
|
|
@measure('snip', bn=True, mode='param')
|
|
def compute_snip_per_weight(net, inputs, targets, mode, loss_fn, split_data=1):
|
|
for layer in net.modules():
|
|
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
|
|
layer.weight_mask = nn.Parameter(torch.ones_like(layer.weight))
|
|
layer.weight.requires_grad = False
|
|
|
|
# Override the forward methods:
|
|
if isinstance(layer, nn.Conv2d):
|
|
layer.forward = types.MethodType(snip_forward_conv2d, layer)
|
|
|
|
if isinstance(layer, nn.Linear):
|
|
layer.forward = types.MethodType(snip_forward_linear, layer)
|
|
|
|
# Compute gradients (but don't apply them)
|
|
net.zero_grad()
|
|
N = inputs.shape[0]
|
|
for sp in range(split_data):
|
|
st=sp*N//split_data
|
|
en=(sp+1)*N//split_data
|
|
|
|
outputs = net.forward(inputs[st:en])
|
|
loss = loss_fn(outputs, targets[st:en])
|
|
loss.backward()
|
|
|
|
# select the gradients that we want to use for search/prune
|
|
def snip(layer):
|
|
if layer.weight_mask.grad is not None:
|
|
return torch.abs(layer.weight_mask.grad)
|
|
else:
|
|
return torch.zeros_like(layer.weight)
|
|
|
|
grads_abs = get_layer_metric_array(net, snip, mode)
|
|
|
|
return grads_abs
|