2020-03-06 09:29:07 +01:00
|
|
|
#####################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
|
|
|
#####################################################
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from copy import deepcopy
|
2021-05-19 09:19:20 +02:00
|
|
|
|
2020-03-06 09:29:07 +01:00
|
|
|
from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR
|
|
|
|
|
|
|
|
|
|
|
|
# The macro structure is based on NASNet
|
|
|
|
class NASNetonCIFAR(nn.Module):
|
2021-05-12 10:28:05 +02:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
C,
|
|
|
|
N,
|
|
|
|
stem_multiplier,
|
|
|
|
num_classes,
|
|
|
|
genotype,
|
|
|
|
auxiliary,
|
|
|
|
affine=True,
|
|
|
|
track_running_stats=True,
|
|
|
|
):
|
|
|
|
super(NASNetonCIFAR, self).__init__()
|
|
|
|
self._C = C
|
|
|
|
self._layerN = N
|
|
|
|
self.stem = nn.Sequential(
|
|
|
|
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
|
|
|
nn.BatchNorm2d(C * stem_multiplier),
|
|
|
|
)
|
2020-03-06 09:29:07 +01:00
|
|
|
|
2021-05-12 10:28:05 +02:00
|
|
|
# config for each layer
|
|
|
|
layer_channels = (
|
|
|
|
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
|
|
|
)
|
|
|
|
layer_reductions = (
|
|
|
|
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
|
|
|
)
|
2020-03-06 09:29:07 +01:00
|
|
|
|
2021-05-12 10:28:05 +02:00
|
|
|
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
|
|
|
C * stem_multiplier,
|
|
|
|
C * stem_multiplier,
|
|
|
|
C,
|
|
|
|
False,
|
|
|
|
)
|
|
|
|
self.auxiliary_index = None
|
|
|
|
self.auxiliary_head = None
|
|
|
|
self.cells = nn.ModuleList()
|
|
|
|
for index, (C_curr, reduction) in enumerate(
|
|
|
|
zip(layer_channels, layer_reductions)
|
|
|
|
):
|
|
|
|
cell = InferCell(
|
|
|
|
genotype,
|
|
|
|
C_prev_prev,
|
|
|
|
C_prev,
|
|
|
|
C_curr,
|
|
|
|
reduction,
|
|
|
|
reduction_prev,
|
|
|
|
affine,
|
|
|
|
track_running_stats,
|
|
|
|
)
|
|
|
|
self.cells.append(cell)
|
|
|
|
C_prev_prev, C_prev, reduction_prev = (
|
|
|
|
C_prev,
|
|
|
|
cell._multiplier * C_curr,
|
|
|
|
reduction,
|
|
|
|
)
|
|
|
|
if reduction and C_curr == C * 4 and auxiliary:
|
|
|
|
self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
|
|
|
|
self.auxiliary_index = index
|
|
|
|
self._Layer = len(self.cells)
|
|
|
|
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
|
|
|
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
|
|
|
self.classifier = nn.Linear(C_prev, num_classes)
|
|
|
|
self.drop_path_prob = -1
|
2020-03-06 09:29:07 +01:00
|
|
|
|
2021-05-12 10:28:05 +02:00
|
|
|
def update_drop_path(self, drop_path_prob):
|
|
|
|
self.drop_path_prob = drop_path_prob
|
2020-03-06 09:29:07 +01:00
|
|
|
|
2021-05-12 10:28:05 +02:00
|
|
|
def auxiliary_param(self):
|
|
|
|
if self.auxiliary_head is None:
|
|
|
|
return []
|
|
|
|
else:
|
|
|
|
return list(self.auxiliary_head.parameters())
|
2020-03-06 09:29:07 +01:00
|
|
|
|
2021-05-12 10:28:05 +02:00
|
|
|
def get_message(self):
|
|
|
|
string = self.extra_repr()
|
|
|
|
for i, cell in enumerate(self.cells):
|
|
|
|
string += "\n {:02d}/{:02d} :: {:}".format(
|
|
|
|
i, len(self.cells), cell.extra_repr()
|
|
|
|
)
|
|
|
|
return string
|
2020-03-06 09:29:07 +01:00
|
|
|
|
2021-05-12 10:28:05 +02:00
|
|
|
def extra_repr(self):
|
|
|
|
return "{name}(C={_C}, N={_layerN}, L={_Layer})".format(
|
|
|
|
name=self.__class__.__name__, **self.__dict__
|
|
|
|
)
|
2020-03-06 09:29:07 +01:00
|
|
|
|
2021-05-12 10:28:05 +02:00
|
|
|
def forward(self, inputs):
|
|
|
|
stem_feature, logits_aux = self.stem(inputs), None
|
|
|
|
cell_results = [stem_feature, stem_feature]
|
|
|
|
for i, cell in enumerate(self.cells):
|
|
|
|
cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
|
|
|
|
cell_results.append(cell_feature)
|
|
|
|
if (
|
|
|
|
self.auxiliary_index is not None
|
|
|
|
and i == self.auxiliary_index
|
|
|
|
and self.training
|
|
|
|
):
|
|
|
|
logits_aux = self.auxiliary_head(cell_results[-1])
|
|
|
|
out = self.lastact(cell_results[-1])
|
|
|
|
out = self.global_pooling(out)
|
|
|
|
out = out.view(out.size(0), -1)
|
|
|
|
logits = self.classifier(out)
|
|
|
|
if logits_aux is None:
|
|
|
|
return out, logits
|
|
|
|
else:
|
|
|
|
return out, [logits, logits_aux]
|