autodl-projects/README.md

95 lines
4.1 KiB
Markdown
Raw Normal View History

2019-09-28 10:24:47 +02:00
# Nueral Architecture Search
2019-01-31 15:27:38 +01:00
2019-09-28 11:51:58 +02:00
This project contains the following neural architecture search algorithms, implemented in [PyTorch](http://pytorch.org).
2019-01-31 15:27:38 +01:00
2019-09-28 11:51:58 +02:00
- Network Pruning via Transformable Architecture Search, NeurIPS 2019
- One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
- Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019
2019-04-02 11:06:25 +02:00
2019-01-31 15:27:38 +01:00
2019-09-28 10:24:47 +02:00
## Requirements and Preparation
Please install `PyTorch>=1.0.1`, `Python>=3.6`, and `opencv`.
The CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`.
Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Driver](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`.
2019-01-31 15:27:38 +01:00
2019-09-28 11:49:13 +02:00
## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717)
<img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="700">
2019-09-28 10:24:47 +02:00
Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`.
If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`.
Search the depth configuration of ResNet:
2019-01-31 17:23:55 +01:00
```
2019-09-28 10:24:47 +02:00
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-depth-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
2019-01-31 17:23:55 +01:00
```
2019-09-28 10:24:47 +02:00
Search the width configuration of ResNet:
2019-01-31 17:23:55 +01:00
```
2019-09-28 10:24:47 +02:00
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-width-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
2019-01-31 17:23:55 +01:00
```
2019-09-28 10:24:47 +02:00
Search for both depth and width configuration of ResNet:
2019-03-31 16:49:43 +02:00
```
2019-09-28 10:24:47 +02:00
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-cifar.sh cifar10 ResNet56 CIFARX 0.47 -1
2019-03-31 16:49:43 +02:00
```
2019-01-31 17:23:55 +01:00
2019-09-28 10:24:47 +02:00
args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed.
## One-Shot Neural Architecture Search via Self-Evaluated Template Network
2019-09-28 11:58:19 +02:00
<img src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="550">
2019-09-28 10:24:47 +02:00
Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
2019-01-31 16:40:20 +01:00
```
2019-09-28 10:24:47 +02:00
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 SETN 96 -1
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 SETN 96 -1
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN 256 -1
2019-01-31 16:40:20 +01:00
```
2019-03-31 16:49:43 +02:00
2019-09-28 10:24:47 +02:00
Searching codes come soon!
2019-09-28 11:49:13 +02:00
## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf)
2019-09-28 10:24:47 +02:00
2019-09-28 11:58:19 +02:00
<img src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="450">
2019-09-28 11:51:58 +02:00
The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle).
2019-04-01 16:24:56 +02:00
2019-09-28 10:24:47 +02:00
Train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 GDAS_V1 96 -1
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1
```
2019-04-02 11:06:25 +02:00
2019-09-28 10:24:47 +02:00
Searching codes come soon!
2019-09-05 15:51:59 +02:00
2019-09-28 10:24:47 +02:00
# Citation
If you find that this project helps your research, please consider citing some of the following papers:
2019-03-31 16:49:43 +02:00
```
2019-09-28 10:24:47 +02:00
@inproceedings{dong2019tas,
title = {Network Pruning via Transformable Architecture Search},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {Neural Information Processing Systems (NeurIPS)},
year = {2019}
}
@inproceedings{dong2019one,
title = {One-Shot Neural Architecture Search via Self-Evaluated Template Network},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
year = {2019}
}
2019-03-31 16:49:43 +02:00
@inproceedings{dong2019search,
2019-09-28 11:58:19 +02:00
title = {Searching for A Robust Neural Architecture in Four GPU Hours},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {1761--1770},
year = {2019}
2019-03-31 16:49:43 +02:00
}
```